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Gaussian Quadrature and the Eigenvalue Problem
John A. Gubner

1. Introduction
Numerical integration or quadrature is the approximation of

an integral
∫

f dµ by another integral
∫

f̂ dµ , where f̂ is a func-
tion that is “close” to f and whose integral is known.1 It fre-
quently happens that

∫
f̂ dµ can be expressed in the form

n

∑
k=1

wk f (xk),

where the nodes xk belong to the range of integration and the
weights wk are computable. For example, this kind of for-
mula always results when f̂ is a polynomial of degree less than
n that interpolates to f at the nodes; i.e., f̂ (xk) = f (xk) for
k = 1, . . . ,n.

As we show below, once the nodes xk are fixed, it is easy to
choose the weights wk so that if f is any polynomial of degree
less than n, then ∫

f dµ =
n

∑
k=1

wk f (xk).

However, if the nodes are carefully chosen (Gaussian quadra-
ture), then this formula holds with equality for all polynomials
f of degree less than 2n. To explain how to do this leads us into
the theory of orthogonal polynomials. The key results are The-
orems 5 and 6. They are illustrated in the context of the Cheby-
shev polynomials in Example 10, where the nodes and weights
for Chebyshev–Gauss quadrature are obtained. The remainder
of the paper is devoted to showing that for Gaussian quadrature,
the ith node xi is the ith eigenvalue of a tridiagonal matrix Jn,
and the ith weight wi is simply related to the first component
of the corresponding orthonormal eigenvector. Simple MAT-
LAB functions are given that compute the nodes and weights for
Hermite–Gauss, Laguerre–Gauss, and Legendre–Gauss quadra-
ture.

2. Polynomial Interpolation
Given distinct real numbers x1, . . . ,xn, let

`k(x) :=
(x− x1) · · ·(x− xk−1)(x− xk+1) · · ·(x− xn)

(xk− x1) · · ·(xk− xk−1)(xk− xk+1) · · ·(xk− xn)
.

1Readers unfamiliar with measure theory can replace
∫

f (x)dµ(x) with∫
f (x)w(x)dx, where the weight function w(x) is positive for all but at most

finitely many values of x in the interval of interest. Typical examples include

w(x) = e−x2
, −∞ < x < ∞, w(x) = 1/

√
1− x2, −1 < x < 1,

w(x) = e−x, 0≤ x < ∞, w(x) = 1, −1≤ x≤ 1,

where it is understood that w(x) = 0 for values of x outside the indicated range of
interest. In addition, if B is a subset of IR, then µ(B) :=

∫
B w(x)dx. In particular,

µ(IR) =
∫

∞

−∞
w(x)dx.

Then `k is a polynomial of degree n−1 that also satisfies

`k(xi) = δki :=
{

1, i = k,
0, i 6= k,

where δ is the Kronecker delta. Using these polynomials, if
we are given a real or complex-valued function f defined on IR,
then

f̂ (x) :=
n

∑
k=1

f (xk)`k(x), (1)

is a polynomial of degree less than n that interpolates to f at the
points x1, . . . ,xn; i.e., f̂ (xk) = f (xk) for k = 1, . . . ,n.

Proposition 1. The interpolating polynomial f̂ is unique.

Proof. Let g be another interpolating polynomial of degree less
than n. Then h := f̂ − g is a polynomial less than n but has n
roots since

h(xk) = f̂ (xk)−g(xk) = f (xk)− f (xk) = 0, k = 1, . . . ,n.

Therefore, h = 0; i.e., f̂ = g.

Remark. As a consequence of the proposition, if f is a polyno-
mial with deg f ≤ n−1, then f̂ = f .

3. Interpolatory Quadrature
Let µ be a measure on IR such that

∫
|x|k dµ(x) < ∞ for

k = 0,1,2, . . . . This guarantees that for any polynomial p,∫
pdµ exits. To avoid the uninteresting situations, we assume

that for any finite set G, µ(IR\G) > 0. When G = ∅, this im-
plies µ(IR) > 0.

Given a function f and its interpolating polynomial f̂ of de-
gree less than n, we can write∫

f̂ (x)dµ(x) =
∫ [ n

∑
k=1

f (xk)`k(x)
]

dµ(x), by (1),

=
n

∑
k=1

f (xk)
∫

`k(x)dµ(x).

If we define the weights

wk :=
∫

`k dµ, k = 1, . . . ,n, (2)

we can write ∫
f̂ dµ =

n

∑
k=1

wk f (xk). (3)

Lemma 2. If f is a polynomial of degree less than n, then∫
f dµ =

n

∑
k=1

wk f (xk). (4)
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Proof. By the Remark following Proposition 1, since f is a poly-
nomial of degree less than n, f = f̂ . Hence

∫
f dµ =

∫
f̂ dµ ,

which is given by (3).

Lemma 3. For the polynomial of degree n

ζ (x) := (x− x1) · · ·(x− xn),

we have
∫

ζ 2 dµ > 0.

Proof. Suppose otherwise that
∫

ζ 2 dµ = 0. Then since ζ 2 ≥ 0,
ζ 2 = 0 µ-a.e.; i.e., if G := {x : ζ (x)2 = 0}, then µ(IR\G) =
0. But G = {x1, . . . ,xn} is a finite set, and we have assumed
µ(IR\G) > 0 for finite sets G.

Lemma 4. If (4) holds for all polynomials of degree less than
2n, then the weights wi must be positive.

Proof. First, from the nature of `i, we can always write

wi :=
n

∑
k=1

wk`i(xk)2.

Second, since we are assuming (4) holds for polynomials of de-
gree less than 2n, and since deg`2

i = 2n−2, we can write

n

∑
k=1

wk`i(xk)2 =
∫

`2
i dµ > 0

by the argument used in the proof of Lemma 3.
Suppose we take f = ζ 2 in (4). Then by Lemma 3 the left-

hand side is positive, while the right-hand size is zero, since
ζ (xk) = 0 for k = 1, . . . ,n. Since degζ 2 = 2n, we have shown
that (4) cannot hold for all polynomials of degree greater than
or equal to 2n.

Suppose that (4) holds for all polynomials of degree less
than 2n. Then in particular it must hold for f = qζ whenever
q is a polynomial with degq < n. In this case, (4) reduces to∫

qζ dµ = 0, (5)

since ζ (xk) = 0 for k = 1, . . . ,n.
For any polynomial f , we can always divide it by ζ in the

sense that there exist polynomials q and r such that

f = qζ + r, degr < degζ = n. (6)

Note that since degr ≤ n−1, Lemma 2 implies∫
r dµ =

n

∑
k=1

wkr(xk).

Furthermore,

r(xk) = f (xk)−q(xk)ζ (xk)
= f (xk),

since ζ (xk) = 0. Hence,∫
r dµ =

n

∑
k=1

wk f (xk).

We can now write∫
f dµ =

∫
(qζ + r)dµ

=
∫

qζ dµ +
∫

r dµ

=
∫

qζ dµ +
n

∑
k=1

wk f (xk).

This reduces to (4) if the integral on the right is zero; i.e., if (5)
holds. Now, if deg f < 2n, then q in (6) must satisfy degq < n.
Hence, if (5) holds for all such q, then (4) holds for f . We thus
have the following result.

Theorem 5. Equation (4) holds for all polynomials f with
deg f < 2n if and only if (5) holds for all polynomials q with
degq < n. Furthermore, (4) cannot hold for all polynomials of
degree greater than or equal to 2n.

4. Orthogonal Polynomials

Examination of (5) suggests that for functions f and g, we
define the inner product2

〈 f ,g〉 :=
∫

f gdµ.

Then (5) says that ζ is orthogonal to the subspace

IPn−1 := span{1,x, . . . ,xn−1}

of polynomials of degree less than n.
Let us apply the Gram–Schmidt procedure to construct poly-

nomials

ϕn(x) := xn−
n−1

∑
k=0

〈xn,ϕk〉
〈ϕk,ϕk〉

ϕk(x), n≥ 1, (7)

where ϕ0(x) := 1. It is easy to check that ϕn is orthogonal to ϕi
for i = 0, . . . ,n− 1. Furthermore, it is easy to see by induction
that

span{ϕ0, . . . ,ϕk}= span{1,x, . . . ,xk}= IPk, k = 0,1, . . . .

In particular, it follows that ϕn is orthogonal to IPn−1 for n≥ 1.

Theorem 6. For n ≥ 1, the polynomial ϕn has n distinct real
roots.

2 We are considering real-valued functions here. In the complex case,

〈 f ,g〉 :=
∫

f g dµ,

where the overbar denotes complex conjugation.
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Proof. Since ϕn and 1 are orthogonal by construction,
∫

ϕn dµ =
0. We first show that ϕn has at least one real root. Suppose not.
Then ϕn is either always positive or always negative as a conse-
quence of the intermediate value theorem. However, the condi-
tion that ϕn be of one sign along with the condition

∫
ϕn dµ = 0

implies ϕn(x) = 0 for µ-a.e. x, contradicting the earlier assump-
tion that µ(IR) > 0. Thus, ϕn has at least one real root. Let
x1, . . . ,xk be real roots of ϕn, where k < n. If we put

p(x) := (x− x1) · · ·(x− xk),

then p is a polynomial of degree less than n, and must therefore
be orthogonal to ϕn. However, since the xi are roots of ϕn, we
can write ϕn(x) = p(x)q(x) for some polynomial q with degq≥
1. Now write

0 =
∫

ϕn pdµ =
∫

qp2 dµ.

If q has no real roots, it is of one sign, and so qp2 is either
always nonnegative or always nonpositive. Furthermore, since
the above integral is zero, we must then have qp2 = 0 µ-a.e.;
i.e., if G := {qp2 = 0}, then µ(IR\G) = 0. But this contradicts
the earlier assumption that for finite sets G, µ(IR\G) > 0. We
therefore conclude that ϕn cannot have fewer than n real roots.

It remains to show that the roots must be distinct. Suppose
otherwise that some real root is repeated, say xn. Then

ϕn(x) = (x− x1) · · ·(x− xn−2)(x− xn−1)2.

If we now redefine p(x) := (x− x1) · · ·(x− xn−2), then ϕn(x) =
p(x)(x− xn−1)2. Hence,

0 <
∫

p(x)2(x− xn−2)2 dµ(x)

=
∫ [

p(x)(x− xn−2)2]p(x)dµ(x)

=
∫

ϕn(x)p(x)dµ(x)

= 0,

where the last step follows because ϕn is orthogonal to all poly-
nomials of degree less than n and deg p < n.

If we denote the roots of ϕn by x1, . . . ,xn, then ϕn is the ζ

we seek for (5) to hold.

Proposition 7 (Discrete-Orthogonality). For 0≤ i, j < n,
n

∑
k=1

wkϕi(xk)ϕ j(xk) = 〈ϕi,ϕ j〉= ‖ϕi‖‖ϕ j‖δi j, (8)

where x1, . . . ,xn are the distinct real roots of ϕn.

Proof. The equality on the right is obvious since ϕi and ϕ j are
orthogonal for i 6= j. To establish the equality on the left, write

〈ϕi,ϕ j〉=
∫

ϕiϕ j dµ =
n

∑
k=1

wkϕi(xk)ϕ j(xk),

where the last equation follows because degϕiϕ j < 2n.

For any function f , its norm is ‖ f‖ := 〈 f , f 〉1/2.

Corollary 8 (Dual Orthogonality). The weights wi :=
∫

`i dµ

satisfy

n−1

∑
k=0

ϕk(xi)ϕk(x j)
‖ϕk‖2 = δi j/

√
wiw j, 1≤ i, j ≤ n. (9)

Proof. (Gautschi [2, p. 4].) Divide both sides of (8) by
‖ϕi‖‖ϕ j‖. The resulting equation can be expressed as the n×n
matrix equation Q′Q = I, where Qk j :=

√
wkϕ j(xk)/‖ϕ j‖. Since

QQ′ = I as well, we can write

δkl = (QQ′)kl =
√

wkwl

n−1

∑
j=1

ϕ j(xk)ϕ j(xl)
‖ϕ j‖2 .

Now change k to i, j to k, and l to j.

Theorem 9 (Three-Term Recurrence). Suppose that ϕ0,ϕ1, . . .
are orthogonal polynomials with degϕn = n and leading coeffi-
cient one. For n≥ 1 we have the three-term recurrence relation

ϕn+1(x) = (x−an)ϕn(x)−bnϕn−1(x),

where

an :=
〈xϕn,ϕn〉
〈ϕn,ϕn〉

and bn :=
〈ϕn,xϕn−1〉
〈ϕn−1,ϕn−1〉

=
〈ϕn,ϕn〉
〈ϕn−1,ϕn−1〉

> 0.

We also have

ϕ1(x) = (x−a0)ϕ0(x) = x−a0,

where a0 := 〈xϕ0,ϕ0〉/〈ϕ0,ϕ0〉=
∫

xdµ/µ(IR).

Proof. First note that the difference polynomial

D(x) := ϕn+1(x)− xϕn(x)
=
(
xn+1 + · · ·

)
− x
(
xn + · · ·

)
is a polynomial of degree at most n. Hence, D can be expanded
in terms of the orthogonal ϕ0, . . . ,ϕn as

D =
n

∑
k=0

〈D,ϕk〉
〈ϕk,ϕk〉

ϕk

=
n

∑
k=0

〈ϕn+1− xϕn,ϕk〉
〈ϕk,ϕk〉

ϕk

= −
n

∑
k=0

〈xϕn,ϕk〉
〈ϕk,ϕk〉

ϕk, by orthogonality,

= −
n

∑
k=0

〈ϕn,xϕk〉
〈ϕk,ϕk〉

ϕk

= −
n

∑
k=n−1

〈ϕn,xϕk〉
〈ϕk,ϕk〉

ϕk, by orthogonality,

since degxϕk(x) < n for k < n−1. Solving for ϕn+1 yields the
result using the definitions of an and bn. The remaining formula
for bn results by observing that

〈ϕn,xϕn−1〉−〈ϕn,ϕn〉= 〈ϕn,xϕn−1−ϕn〉= 0

since xϕn−1−ϕn is of degree at most n−1 and therefore orthog-
onal to ϕn.
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Example 10. The Chebyshev polynomials Tn(x) are defined
as follows. For −1≤ x≤ 1, put

Tn(x) := cos(ncos−1(x)).

It is easy to see that T0(x) = 1 and T1(x) = x. We now show that
the Tn satisfy the three-term recurrence

Tn+1(x) = 2xTn(x)−Tn−1(x). (10)

Put θ := cos−1(x) so that for n≥ 1, we can write

Tn±1(x) = cos([n±1]θ)
= cos(nθ)cosθ ∓ sin(nθ)sinθ

= Tn(x) · x∓ sin(nθ)sinθ .

Hence,
Tn+1(x)+Tn−1(x) = 2xTn(x),

and (10) follows. Although we originally defined Tn(x) only for
−1≤ x≤ 1, if we start with T0(x) = 1 and T1(x) = x and define
Tn+1(x) by (10) for n ≥ 1, then Tn(x) is a polynomial of degree
n that is defined for all x.

We next show that Tn has n distinct real roots in (−1,1) that
can be found by inspection. Recall that cos(θ) = 0 when θ is
an odd multiple of π/2. Put

xk := cos
(2k−1

2n
π

)
, k = 1, . . . ,n,

so that ncos−1(xk) = (2k−1)π/2. Then

Tn(xk) = cos(ncos−1(xk)) = cos
(
(2k−1)

π

2

)
= 0.

Our next task is to show that the Tn are orthogonal if dµ(x) =
dx/
√

1− x2. In the integral

〈Tn,Tm〉=
∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx,

make the change of variable x = cosθ , dx =−sinθ dθ . Then

〈Tn,Tm〉 =
∫ 0

π

cos(nθ)cos(mθ)√
1− cos2 θ

(−sinθ)dθ

=
∫

π

0
cos(nθ)cos(mθ)dθ .

Using the identity

cosAcosB = 1
2 [cos(A−B)+ cos(A+B)],

it is easy to show that the above integral is zero for n 6= m.
Although the Tn are orthogonal, they do not have leading

coefficient one as do the ϕn(x). By writing out (10) for a few
values of n, it is easy to see that the leading coefficient of Tn is
2n−1 for n ≥ 1. Hence, ϕn(x) = Tn(x)/2n−1. Dividing (10) by
2n, we find that

ϕn+1(x) = xϕn(x)− (1/4)ϕn−1(x), n≥ 2.

Since ϕ1 = T1 and ϕ0 = T0, we also have

ϕ2(x) = xϕ1(x)− (1/2)ϕ0(x).

Hence, an = 0 for n≥ 1, while b1 = 1/2 and bn = 1/4 for n≥ 2.
We now show that the weights are all the same and equal to

π/n. First, it is easy to see that for n ≥ 1, ‖Tn‖2 = π/2, and
hence, ‖ϕn‖2 = π/22n−1. The formula for wi then follows from
(9) with j = i and some simplification.

We conclude this example by pointing out that the
Chebyshev–Gauss nodes xk can be generated as a vector
(from largest to smallest) with the single MATLAB command
x=cos([1:2:2*n]*pi/(2*n)).

In general, the nodes and weights cannot be found by inspec-
tion. It would seem that unless the ϕn have a special structure,
in order to find the nodes xi and weights wi, we have to find the
n distinct roots of ϕn to get the xi and then compute the wi using
either the integral definition wi =

∫
`i dµ or (9). However, there

is another way.

Theorem 11. The wi and xi can be obtained from the eigen-
value decomposition of the symmetric, tridiagonal Jacobi ma-
trix

Jn :=


a0
√

b1√
b1 a1

√
b2

√
b2

. . .
. . .

. . . an−2
√

bn−1√
bn−1 an−1

 ,

where the an and bn are as in the three-term recurrence Theo-
rem 9. If V ′JnV = Λ = diag(λ1, . . . ,λn), where V ′V = I is the
n× n identity matrix, then xi = λi and wi = µ(IR)v2

i,0, where vi
is the ith column of V and vi,0 is the first component of vi.

Example 12. The Hermite polynomials Hn(x), which are de-
fined to have leading coefficient 2n, result if dµ(x) := e−x2

dx.
In particular, note that µ(IR) =

√
π . Since the leading coeffi-

cient of Hn is 2n, ϕn(x) = Hn(x)/2n. The three-term recurrence
for the Hn is well-known to be

Hn+1(x) = 2xHn(x)−2nHn−1(x),

where H0(x) = 1. Dividing by 2n+1 yields

Hn+1(x)
2n+1 = x

Hn(x)
2n − n

2
Hn−1(x)

2n−1 ,

or
ϕn+1(x) = (x−0)ϕn(x)−

n
2

ϕn−1(x).

Hence, an = 0 and bn = n/2. The Hermite nodes and weights
are easily generated with the following MATLAB function.

function [x,w] = hermitequad(n)
%
% Generate nodes and weights for
% Hermite-Gauss quadrature.
% Note that x is a column vector

4
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% and w is a row vector.
%
u = sqrt([1:n-1]/2); % upper diagonal of J
[V,Lambda] = eig(diag(u,1)+diag(u,-1));
[x,i] = sort(diag(Lambda));
Vtop = V(1,:);
Vtop = Vtop(i);
w = sqrt(pi)*Vtop.ˆ2;

Example 13. The Laguerre polynomials Ln(x), which are de-
fined to have leading coefficient (−1)n/n!, result if dµ(x) :=
e−x dx for x ≥ 0. In particular, note that µ(IR) = 1. Since the
leading coefficient of Ln is (−1)n/n!, ϕn(x) = Ln(x)n!/(−1)n.
The three-term recurrence for the Ln is well-known to be

(n+1)Ln+1(x) = (2n+1− x)Ln(x)−nLn−1(x),

where L0(x) = 1. A little algebra shows that

ϕn+1(x) = (x− [2n+1])ϕn(x)−n2
ϕn−1(x).

Hence, an = 2n + 1 and bn = n2. The Laguerre nodes and
weights are easily generated with the following MATLAB func-
tion.

function [x,w] = laguerrequad(n)
%
% Generate nodes and weights for
% Laguerre-Gauss quadrature.
% Note that x is a column vector
% and w is a row vector.
%
a = 2*[0:n-1]+1; % diagonal of J
u = [1:n-1]; % upper diagonal of J
[V,Lambda] = eig(diag(u,1)+diag(a)+diag(u,-1));
[x,i] = sort(diag(Lambda));
Vtop = V(1,:);
Vtop = Vtop(i);
w = Vtop.ˆ2;

Example 14. The Legendre polynomials Pn(x), which are
defined to have leading coefficient (2n)!/(2n(n!)2), result if
dµ(x) := dx for −1≤ x≤ 1. In particular, note that µ(IR) = 2.
Since the leading coefficient of Pn is (2n)!/(2n(n!)2), ϕn(x) =
Pn(x)2n(n!)2/(2n)!. The three-term recurrence for the Pn is
well-known to be

(n+1)Pn+1(x) = (2n+1)xPn(x)−nPn−1(x),

where P0(x) = 1. A little algebra shows that

ϕn+1(x) = (x−0)ϕn(x)−
n2

4n2−1
ϕn−1(x).

Hence, an = 0 and bn = 1/(4− n−2). The Legendre nodes and
weights are easily generated with the following MATLAB func-
tion.

function [x,w] = legendrequad(n)
%
% Generate nodes and weights for

% Legendre-Gauss quadrature on [-1,1].
% Note that x is a column vector
% and w is a row vector.
%
u = sqrt(1./(4-1./[1:n-1].ˆ2)); % upper diag.
[V,Lambda] = eig(diag(u,1)+diag(u,-1));
[x,i] = sort(diag(Lambda));
Vtop = V(1,:);
Vtop = Vtop(i);
w = 2*Vtop.ˆ2;

Example 15. The shifted Legendre polynomials are P∗n (x) :=
Pn(2x−1). The P∗n have leading coefficient (2n)!/(n!)2. These
polynomials result if dµ(x) := dx for 0 ≤ x ≤ 1. In particu-
lar, note that µ(IR) = 1. Since the leading coefficient of P∗n is
(2n)!/(n!)2, ϕn(x) = P∗n (x)(n!)2/(2n)!. The three-term recur-
rence for the P∗n is easily seen to be

(n+1)P∗n+1(x) = (2n+1)(2x−1)P∗n (x)−nP∗n−1(x),

where P∗0 (x) = 1. A little algebra shows that

ϕn+1(x) = (x−1/2)ϕn(x)−
n2

4(4n2−1)
ϕn−1(x).

Hence, an = 1/2 and bn = 1/(4(4− n−2)). The shifted Legen-
dre nodes and weights are easily generated with the following
MATLAB function.

function [x,w] = legendrequad01(n)
%
% Generate nodes and weights for shifted
% Legendre-Gauss quadrature on [0,1].
% Note that x is a column vector
% and w is a row vector.
%
a = repmat(1/2,1,n); % main diagonal of J
u = sqrt(1./(4*(4-1./[1:n-1].ˆ2)));
[V,Lambda] = eig(diag(u,1)+diag(a)+diag(u,-1));
[x,i] = sort(diag(Lambda));
Vtop = V(1,:);
Vtop = Vtop(i);
w = Vtop.ˆ2;

Remark. By Lemma 4, the weights of a Gaussian quadrature
must be positive. However, when n is large, some weights can
numerically evaluate to zero. The follwing lines can be added to
the preceding MATLAB functions to detect this and remove the
unusable weights and nodes before returning.

i = find(w>0);
w = w(i);
x = x(i);
nw = length(i);
if nw < n

fprintf(’%g zero weights detected.\n’,n-nw)
end

The parameter nw can be added to the list of variables returned
to the calling program so it can check if nw is less than n.

5
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Theorem 16. The weights and nodes of the Chebyshev, Legen-
dre, and Hermite quadrature rules exhibit symmetry and anti-
symmetry, respectively.

Proof. If one computes the first few orthogonal polynomials
mentioned, one quickly sees that the even powers are even func-
tions and the odd powers are odd functions. Hence, their roots
have the property that if x is a root, then so is −x.

Using the antisymmetry of the nodes, we can show that the
weights are symmetric using (2). For example, for n = 6, we
can use the fact that x4 =−x3, x5 =−x2, and x6 =−x1 to write

`2(x) =
(x− x1)(x− x3)(x− x4)(x− x5)(x− x6)

(x2− x1)(x2− x3)(x2− x4)(x2− x5)(x2− x6)

=
(x2− x2

1)(x
2− x2

3)
(x2

2− x2
1)(x

2
2− x2

3)
· 1

2x2
· (x2 + x).

Similarly,

`5(x) =
(x− x1)(x− x2)(x− x3)(x− x4)(x− x6)

(x5− x1)(x5− x2)(x5− x3)(x5− x4)(x5− x6)

=
(x2− x2

1)(x
2− x2

3)
(x2

2− x2
1)(x

2
2− x2

3)
· 1

2x2
· (x2− x).

Since `5(−x) = `2(x) and since the weight functions for dµ are
even, we see from (2) that w5 = w2.

Proof of Theorem 11. The first step is to rewrite the three-term
recurrence

ϕk(x) = (x−ak−1)ϕk−1(x)−bk−1ϕk−2(x)

in terms of the orthonormal polynomials ψk := ϕk/‖ϕk‖. This
leads to

‖ϕk‖ψk(x) = (x−ak−1)‖ϕk−1‖ψk−1(x)−bk−1‖ϕk−2‖ψk−2(x).

Divide this equation by ‖ϕk−1‖ and use the fact that
√

bk =
‖ϕk‖/‖ϕk−1‖ to obtain√

bkψk(x) = (x−ak−1)ψk−1(x)−
√

bk−1ψk−2(x).

Rearrange this as

xψk−1(x) =
√

bkψk(x)+ak−1ψk−1(x)+
√

bk−1ψk−2(x).

If we write out this formula for k = 1, . . . ,n, we get a system of
n linear equations. To express this in matrix-vector notation, put

Ψ(x) := [ψ0(x), . . . ,ψn−1(x)]′.

Then the system of linear equations can be written as

xΨ(x) = JnΨ(x)+


0
...
0√

bnψn(x)

 .

Now, if x = xi is the ith root of ϕn, which is also the ith root of
ψn = ϕn/‖ϕn‖, then the matrix-vector equation reduces to

xiΨ(xi) = JnΨ(xi),

which says that xi is an eigenvalue of Jn with eigenvector Ψ(xi).
Since by definition eigenvectors cannot be the zero vector, we
should check this condition. By (9), (

√
wi Ψ(xi))′(

√
wi Ψ(xi)) =

1. Hence,
√

wi Ψ(xi) is a unit-norm eigenvector of Jn. Since we
are working in a real vector space,

√
wi Ψ(xi) must be equal to

plus or minus the ith column vector of V . Since
√

wi Ψ(xi) =
±vi, their first components must obey this relation too. Since
the first component of Ψ(xi) is ψ0(xi) = 1/‖ϕ0‖, the theorem is
proved.

Remark. An easy corollary of this theorem is that

ϕn(x) = det(xI− Jn). (11)

The right-hand side is a polynomial of degree n with leading co-
efficient one and whose roots are the eigenvalues of Jn. Hence,
the right-hand side is exactly (x−x1) · · ·(x−xn) = ϕn(x). An al-
ternative way to prove (11) is the expand the determinant along
the last column of xI− Jn to show that det(xI− Jn) satisfies the
same three-term recurrence as ϕn; hence, det(xI− Jn) = ϕn(x).

According to Gautschi [1], the fact that the roots of ϕn are
the eigenvalues of Jn was known prior to the 1960s. The rela-
tionship of the weights to the orthonormal eigenvectors of Jn is
found in Wilf [8, Ch. 2, Ex. 9]. Gautschi also says that this fact
was known to Goertzel around 1954 and appeared in Gordon [4]
in 1968. It was Golub and Welsch [3] who provided an efficient
algorithm for solving the eigenvalue problem for Jn to obtain the
eigenvalues xi and the weights wi.
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