1. a. State the Cauchy-Goursat Theorem (fill in):
If f is analytic at all points interior to and on a simple closed contour C, then

b. State the Residue Theorem (fill in):
Let C be a positively-oriented simple closed contour. If a function f is analytic inside and on C except for a finite number of singular points z_k ($k = 1, 2, \ldots, n$) inside C, then

2. Let

$$f(z) = \frac{5}{z} + \frac{3 - 2i}{z - 4} - \frac{2}{(z - 4)^2} + \frac{i}{(z + i)^3} + \frac{2i}{(z + i)^5} + (z + 1)^3 - ze^z$$

Locate each singularity, state the order and the residue there.

<table>
<thead>
<tr>
<th>Pole</th>
<th>Order</th>
<th>Residue</th>
</tr>
</thead>
</table>
3. Let \(f(z) = \frac{1}{z^4 + 4z^2} \).

a. Find the poles of \(f \).

In parts b. and c., evaluate \(\int_C f(z) \, dz \) for each given contour \(C \) using the calculus of residues.

b. Let \(C = \) the unit circle \(\{ z : |z| = 1 \} \). \(\int_C f(z) \, dz = \)

c. Let \(C = \) the circle \(\{ z : |z - 4i| = 3 \} \). \(\int_C f(z) \, dz = \)

4. Let \(C \) denote the rectangle with corners \(-1 - i, -1 + i, 2 + i, 2 - i\). Sketch.

Evaluate \(\int_C f(z) \, dz \) for each given \(f \).

a. \(f(z) = \frac{8z^2 + 1}{z - 3 - i} \). \(\int_C f(z) \, dz = \)

b. \(f(z) = \frac{8z^2 + 1}{(z - 1)^3} \). \(\int_C f(z) \, dz = \)

c. \(f(z) = \frac{8z^2 + 1}{(z - 1)^n} \) for \(n > 3 \). \(\int_C f(z) \, dz = \)
5. a. Show that $\int_{|z|=1} \tan \pi z \, dz = -4i$. (Hint: write as sine over cosine.)

b. Use residue techniques to show that $\int_{-\infty}^{\infty} \frac{dx}{x^2 + 9} = \frac{\pi}{3}$.

6. Let l denote the straight line segment from 2 to i in the complex plane. Let $u(z) = \text{Re } z$.

a. Find $M = \max_{z \in l} |u(z)|$.

b. Using the standard estimate, show that $\left| \int_{l} u(z) \, dz \right| \leq 2\sqrt{5}$.
7. Let \(\phi(z) = \bar{z} \). Let \(C_R \) denote the semicircle \(\{ z : |z| = R, \ 0 \leq \theta \leq \pi \} \).

 a. Using the standard estimate, show that \(\left| \int_{C_R} \phi(z) \, dz \right| \leq \pi R^2 \).

 b. Let \(C \) denote the simple closed contour obtained by adding the line segment \([-R, R]\) on the real axis to \(C_R \). Would you expect that \(\int_{C} \phi(z) \, dz = 0 \)? Why/Why not?

8. Let \(g(z) = \left(\frac{z + 1}{z - 1} \right)^5 \). Let \(C \) denote the circle \(\{ z : |z| = 2 \} \). Let, for \(|z_0| < 2 \),

 \[
 f(z_0) = \frac{1}{2\pi i} \int_{C} \frac{g(z)}{(z - z_0)^6} \, dz.
 \]

 a. In the integral for \(f \), substitute in for \(g \) to get a formula for \(f(z_0) \).

 b. Show that \(f(1) = 0 \).

 c. Show that \(f(-1) = -\frac{1}{32} \).