Second Quantization
and
Recurrences

Philip Feinsilver and John McSorley

Department of Mathematics
Southern Illinois University, Carbondale, Illinois

Via recurrences, we find the
matching polynomials of cyclically labelled paths, cycles, and trees.
The technique is to use
trace formulas for matrices acting on the space of symmetric tensors.

Special Session on Special Functions
and Orthogonal Polynomials
Annandale-on-Hudson, NY
9 October 2005
1 Matching polynomials

One-variable path

\[x \quad x \quad x \]

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
\end{array}
\]

\[1 + 3x + x^2 \]

Multi-variable path

\[x_1 \quad x_2 \quad x_3 \]

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
\end{array}
\]

\[1 + x_1 + x_2 + x_3 + x_1 x_3 \]

nc-function: \(\phi_n \) is the sum of all *nonconsecutive* monomials in the variables \(x_1, x_2, \ldots, x_n \).

Reciprocal-Chebyshev 2nd kind: \(\phi_{n-1}(x) = \sum_k \binom{n - k}{k} x^k \)
Cycle

\[x_2 \]

\[x_1 \]

\[x_3 \]

\[x_4 \]

\[1 + x_1 + x_2 + x_3 + x_4 + x_1 x_3 + x_2 x_4 \]

ncc-function: \(\tau_n \) is the sum of all *nonconsecutive, cyclic* monomials in the variables \(x_1, x_2, \ldots, x_n \).

Reciprocal-Chebyshev 1st kind:

\[
\tau_n(x) = \sum_{k=0}^{n} \binom{n-k}{k} \frac{n}{n-k} x^k
\]

Multi-variable cyclic path

1 \(\rightarrow \) 2 \(\rightarrow \) 3 \(\rightarrow \) 4 \(\rightarrow \) 5 \(\rightarrow \) 6 \(\rightarrow \) 7

\[1 + 2x_1 + 2x_2 + 2x_3 + x_1^2 + 2x_1 x_2 + 3x_1 x_3 + x_2^2 + 2x_2 x_3 + x_3^2 + x_1^2 x_3 + 2x_1 x_2 x_3 + x_1 x_3^2 \]

This is the question
2 Recurrences and matrices

* nc-Recurrence

\[\phi_n = \phi_{n-1} + x_n \phi_{n-2} \]

The nc-function \(\phi_n \) satisfies this recurrence with I.C.'s \(\phi_{-1} = 1, \phi_0 = 1 \).

Denoting by \(f_n \) and \(g_n \) the fundamental solutions to this recurrence, we have \(\phi_n = f_n + g_n \).

* Matrices

\[X = X_n = \begin{pmatrix} g_{n-1} & f_{n-1} \\ g_n & f_n \end{pmatrix} \]

The ncc-function \(\tau_n = g_{n-1} + f_n \) is the trace of \(X_n \).

The matrix factors as

\[X = \begin{pmatrix} 0 & 1 \\ x_n & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ x_{n-1} & 1 \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ x_1 & 1 \end{pmatrix} \]
2.1 Tau-Delta recurrence

Any matrix element $\psi_N = \langle u, X^N v \rangle$, $u, v \in \mathbb{R}^2$, satisfies the **tau-Delta recurrence**

$$\psi_N = \tau \psi_{N-1} - \Delta \psi_{N-2}$$

where $\tau = \text{tr } X$ and $\Delta = \det X = (-1)^n x_1 x_2 \cdots x_n$.

- **First fundamental solution**

$$G_N = \sum_{k=0}^{\lfloor N/2 \rfloor} \binom{N-k}{k} \tau^{N-2k} (-\Delta)^k$$

- **Generating function**

$$\frac{1}{\det(I - tX)} = \sum_{N=0}^{\infty} t^N G_N$$

Powers of X correspond to cyclic repetition of the initial path with n edges.
Second quantization and trace formulas

• **Symmetric representation** of a $d \times d$ matrix A

With $\mathbf{u} = (u_1, \ldots, u_d)^T$, $\mathbf{v} = (v_1, \ldots, v_d)^T$,

$$\mathbf{v} = A \mathbf{u}$$

For given homogeneous degree N, define **matrix elements** by

$$v_{1}^{m_1} \cdots v_{d}^{m_d} = \sum_{n_1,\ldots,n_d} \left\langle \begin{array}{c} m_1, \ldots, m_d \\ n_1, \ldots, n_d \end{array} \right\rangle_A u_{1}^{n_1} \cdots u_{d}^{n_d}$$

$$v^m = \sum_{n} \left\langle \begin{array}{c} m \\ n \end{array} \right\rangle_A u^n$$

This is a representation of the multiplicative semigroup of matrices. In other words, we have the

• **Homomorphism property**

$$\left\langle \begin{array}{c} m \\ n \end{array} \right\rangle_{AB} = \sum_{k} \left\langle \begin{array}{c} m \\ k \end{array} \right\rangle_A \left\langle \begin{array}{c} k \\ n \end{array} \right\rangle_B$$
3.1 Symmetric traces

- The action defined here on polynomials is equivalent to the action on symmetric tensor powers, as in classical invariant theory. See Fulton and Harris [Representation theory, a first course, pp. 472-5].

- **boson Fock space** over the d-dimensional vector space is the space of symmetric tensor powers.

- **Symmetric trace**: for fixed homogeneous degree N the symmetric trace of A in degree N

 \[
 \operatorname{tr}_{\text{Sym}}^N(A) = \sum_{|m|=N} \left\langle m \right|_A
 \]

- **Symmetric trace theorem**

 (See Springer [Invariant theory, LNM 585, pp. 51-2].)

 \[
 \frac{1}{\det(I - tA)} = \sum_{N=0}^{\infty} t^N \operatorname{tr}_{\text{Sym}}^N(A).
 \]
• **Tau-Delta recurrence revisited**

For G_N, the first fundamental solution to the $\tau-\Delta$ recurrence, the Symmetric Trace Theorem says

$$G_N = \text{tr}^N_{\text{Sym}}(X) = \sum_{|m|=N} \langle m \rangle_X$$

$$= \sum_{|m|=N} \langle m \rangle \xi_n \xi_{n-1} \cdots \xi_1$$

By the Homomorphism Property, we calculate the matrix elements for each factor ξ_i.

• **Matrix elements** for $\xi_i = \begin{pmatrix} 0 & 1 \\ x_i & a_i \end{pmatrix}$. The mapping induced on polynomials is

$$v_1 = u_2, \quad v_2 = x_i u_1 + a_i u_2$$

And we find, for fixed homogeneous degree N,

$$\langle m \rangle_{\xi_i} = \begin{pmatrix} N - m \\ n \end{pmatrix} x_i^n a_i^{N-m-n}$$
4 Cyclic binomial identity

\[G_N = \sum_{k_1, \ldots, k_n} \binom{N - k_2}{k_1} \binom{N - k_3}{k_2} \cdots \binom{N - k_n}{k_{n-1}} \binom{N - k_1}{k_n} \times x_1^{k_1} \cdots x_n^{k_n} a_1^{N-k_1-k_2} a_2^{N-k_2-k_3} \cdots a_n^{N-k_n-k_1} \]

\[= \Delta^{N/2} U_N \left(\frac{\tau}{2\sqrt{\Delta}} \right) \]

\[= \sum_{k=0}^{[N/2]} \binom{N - k}{k} \tau^{N-2k} (-\Delta)^k \]

\[= \sum_{m,k} \binom{m}{k} \binom{N - m}{m - k} f_n^{N-2m+k} g_{n-1}^k (f_{n-1} g_n)^{m-k} \]

where \(U_N \) denotes the Chebyshev polynomial of the second kind.

Recall \(f_n \) and \(g_n \) are the fundamental solutions to the initial \(n \)-step recurrence.
5 Comments

• Special functions interest

\(n=2 \) finite \(_2F_1 \) summation or \(Chu-Vandermonde \) sum

\(n=3 \) gives \(_3F_2 \) \(Pfaff-Saalschütz \) sum

\(n \geq 4 \) gives a multivariate summation formula that requires further investigation

• Matching polynomials

\(G_N + (\phi_n - \tau_n)G_{N-1} \) is the matching polynomial for the \(N \)-fold repeated path of length \(n \)

\(2 \Delta^{N/2} T_N \left(\frac{\tau}{2\sqrt{\Delta}} \right) \) is for the corresponding cycle.

Formulas for trees.
6 Conclusion

- **Second quantization of a recurrence** which is the periodic extension [constant coefficients] of a given recurrence [non-constant coefficients] yields identities in the underlying variables by interpreting the fundamental solution in various ways.

- **Hierarchy of hierarchies of identities** since for fixed r, an r-step recurrence gives a hierarchy of identities. Now vary r.

- **Relation** with mathematical objects such as multivariate Chebyshev polynomials?