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1 Main formula

⋆ Denote the transpose of π‡ by π̂, of π∗ by π̂∗.

⋆ The exponential of the adjoint representation, Adg ,

connects the left and right duals

gξj = gξjg
−1g = ξ∗j g = Adg(ξj)g = Adg(ξ

‡
j )g

⋆ Adg acts on the row vector with components ξ‡i .

⋆ Solving for ∂i shows that the left and right duals are

related as columns by

ξ∗ = π∗π‡−1
ξ‡

⋆ Define the adjoint group element

π̌ = g(A, ξ̌)

⋆ The exponential of the adjoint representation is given

by

π̌ = π̂−1π̂∗

Proof: As columns

ξ∗ = π̌†ξ‡

And we see that π̌† = π∗π‡−1
and hence the result.



2 Example

� For the affine group we have

ξ̌1 =

(

0 −1

0 0

)

, ξ̌2 =

(

1 0

0 0

)

Calculating exponentials gives

eA1ξ̌1eA2ξ̌2 =

(

1 −A1

0 1

) (

eA2 0

0 1

)

=

(

eA2 −A1

0 1

)

Recalling the pi-matrices

π‡ =

(

1 0

A1 1

)

, π∗ =

(

eA2 0

0 1

)

it is readily checked that this is the transpose of π∗π‡−1
.
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3 Group law and pi-matrices

⋆ Write g = g(A)g(B) = g(C), with C = A ⊙ B.

⋆ Differentiating with respect to Ai we get

Π‡
iµ(A) ξ‡µ(A)g =

∂g

∂Cλ

∂Cλ

∂Ai
= Π‡

iµ(A) ξµg

⋆ And

Π∗
iµ(B) ξ∗µ(B)g =

∂g

∂Cλ

∂Cλ

∂Bi
= Π∗

iµ(B) gξµ

⋆ So

∂g

∂Ci
= Π‡

iµ(C) ξ‡µ(C)g = Π‡
iµ(C) ξµg

= Π∗
iµ(C) ξ∗µ(C)g = Π∗

iµ(C) gξµ



⋆ Solving writing C = A ⊙ B yields

∂(A ⊙ B)

∂A
= π̂(A ⊙ B) π̂−1(A)

∂(A ⊙ B)

∂B
= π̂∗(A ⊙ B) π̂∗−1(B)

⋆ Letting A = 0 in the first equation, B = 0 in the

second yields

∂(A ⊙ B)

∂A

∣

∣

∣

∣

A=0

= π̂(B)

∂(A ⊙ B)

∂B

∣

∣

∣

∣

B=0

= π̂∗(A)



4 Examples

� Recall the HW group law : C1 = A1 + B1

C2 = A2 + B2 + A3B1, C3 = A3 + B3

and the pi-matrices

π‡(A) =





1 0 0

0 1 0

0 A1 1



 , π∗(A) =





1 A3 0

0 1 0

0 0 1





Calculating the Jacobians, we find

∂Ci

∂Aj
=





1 0 0

0 1 B1

0 0 1



 ,
∂Ci

∂Bj
=





1 0 0

A3 1 0

0 0 1





Note that in this case the pi-matrices are a representation of

the group, i.e.

π̂(A⊙B) = π̂(A)π̂(B), π∗(A⊙B) = π∗(A)π∗(B)

which explains why evaluations at 0 are unnecessary.



� For aff(2) we have

C1 = A1 + B1e
A2

C2 = A2 + B2

and the pi-matrices

π‡(A) =

(

1 0

A1 1

)

, π∗(A) =

(

eA2 0

0 1

)

Calculating the Jacobians, we find

∂Ci

∂Aj
=

(

1 B1e
A2

0 1

)

,
∂Ci

∂Bj
=

(

eA2 0

0 1

)

We readily verify the corresponding relations.
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5 Procedure

⋆ Start with a given basis for the Lie algebra.

⋆ Find the coordinate map via the characteristic

equations for the left dual flow Ȧ = απ‡(A).

With initial conditions A(0) = A, this yields A(αt) ⊙ A.

Hence the map α → A, by evaluating at A = 0, t = 1.

⋆ Interpret A as momentum variables

α as canonical momenta .

⋆ Dual variables are x to A, Y to α.

⋆ Jacobians

⋆
∂A

∂α
expressed in terms of A is used for the

raising operators Y .

⋆
∂α

∂A
in terms of α computed as the algebraic inverse

is used to express the variables x in terms of abstract

raising and lowering operators.

The x variables in that form are the recursion operators .



⋆ Generic formulae

Y = xW (D) = xU ′(V (D))

x = Y V ′(D) = Y U ′(V )−1

become

Y = xA′(α(A))

∣

∣

∣

∣

A→D

, x = Y A′(α)−1

∣

∣

∣

∣

Y →R

α→V

⋆ Canonical polynomials yn(x) = Y n1. Abstract

raising and lowering operators on the basis yn are

Ri yn = Yi yn = yn+ei

Vi yn = ni yn−ei

⋆ Acting on the basis yn, x’s yield recursion formulas.

Basic expressions are (row vector times matrix) :

Y = xA′(α(D))

x = R A′(V )−1



⋆ Including a canonical change-of-variables in ξ‡

yields the general dvf

ξ̂i = xνWνλ(D)π‡
iλ(V (D))

with

eαµξ̂µ1 = exµUµ(A(α))

⋆ In particular,

ξ̂i = xνA′(D)−1
νλ π‡

iλ(A(D))

yields

eαµξ̂µ1 = eαµxµ .

Now the coherent state is the same as for an abelian

algebra, so we call these

ACS operators



6 Integral formula for the Jacobian

⋆ To get the canonical variables requires the Jacobian of

the map α → A.

Since one has the differential equations for A,

namely the characteristic equations Ȧ = απ(A),

one would think it possible to find ∂A/∂α directly in terms

of the π-matrices.

This is the subject of an interesting theorem stated without

proof.

⋆ Let J = ∂A/∂α denote the Jacobian of the coordinate

map α → A. Then

J(α) = π̂(A(α))

∫ 1

0

π̌(A(s)) ds

⋆ Alternatively, we have

J(α) = π̂∗(A(α))

∫ 1

0

π̌−1(A(s)) ds

⋆ For the raising operators, we want J as a function of A.



7 Canonical variables in the nonabelian case

⋆ Canonical variables can be combined with the Lie

case. Let

Y = xναµπ‡
µλ(V (D))Wνλ(D)

Then

etY ea·x = exp

(

x · U
(

A(tα) ⊙ V (a)
)

)

Proof:

Acting on ea·x we have

Y ea·x = xναµπ‡
µλ(V (a))Wνλ(a)ea·x

= αµπ‡
µλ(V (a))Wνλ(a)

∂

∂aν
ea·x

This latter is a vector field in the a-variables.



⋆ The characteristic equations are

ȧi = αµπ‡
µλ(V (a))Wiλ(a)

⋆ Multiplying by V ′(a) yields

V ′(a)kλȧλ = αµπ‡
µk(V (a))

⋆ The left-hand side is an exact derivative,
d

dt
V (a(t)) .

So these are characteristic equations for the left dual flow in

the V -variables. Integrating, we have

V (a(t)) = A(tα) ⊙ V (a)

In other words,

a(t) = U(A(tα) ⊙ V (a))



⋆ To the vector fields

ξ‡i (V (x)) = π‡
iλ(V (x))Wνλ(x)Dν

correspond the dvf’s

ξ̂i = xνWνλ(D)π‡
iλ(V (D))

And with X̂ = αµξ̂µ,

eX̂1 = ex·U(A(α))

Note that the ξ̂i are the double dual in the canonical

variables (Y, V ).

⋆ Now choose U and A to be inverse maps, i.e.,

V (z) = A(z). Then we have the nonabelian Lie algebra

yielding the same result on the vacuum state, 1, as the

abelian one, namely

exp(X̂)1 = exp(α · x)



8 Examples

� For HW we have the coordinate map

A1 = α1, A2 = α2 + α1α3/2, A3 = α3

⋆ The Jacobians are

∂A

∂α
=





1 0 0

α3/2 1 α1/2

0 0 1





and

∂α

∂A
=





1 0 0

−α3/2 1 −α1/2

0 0 1





with the latter calculated as

(

∂A

∂α

)−1

.

⋆ In terms of A,

∂A

∂α
(A) =





1 0 0

A3/2 1 A1/2

0 0 1







⋆ Contracting with x and replacing A by D yields the

raising operators

Y1 = x1 + 1
2x2D3 , Y2 = x2 , Y3 = x3 + 1

2x2D1

⋆ These are commuting variables.

⋆ The basic expansion is

eαµYµ1 = eα1x1ex2(α2+α1α3/2)eα3x3

=
∑

n≥0

αn

n!
yn(x)

⋆ Contracting with R and replacing α by V in ∂α/∂A

yields the x-variables as recursion operators

x1 = R1−R2V3/2 , x2 = R2 , x3 = −R2V1/2+R3



⋆ On the basis yn, we thus have

x1 yn = yn+e1 −
1
2 n3 yn+e2−e3

x2 yn = yn+e2

x3 yn = yn+e3 −
1
2 n1 yn−e1+e2

⋆ Replacing R by x, V by D and contracting

with the transpose of π‡(A(D)), yields

the ACS representation of the Lie algebra

ξ̂1 = x1 −
1
2x2D3 , ξ̂2 = x2 , ξ̂3 = x3 + 1

2x2D1

which obey the commutation relations for the Heisenberg

algebra while satisfying

exp (αµξ̂µ)1 = expαµxµ



� Aff

We have the coordinate map

A1(α) =
α1

α2
(eα2 − 1) , A2(α) = α2

and

π‡ =

(

1 0

A1 1

)

The Jacobians are

∂A

∂α
=

(

α1 (eα2 − 1)/α2 −α1 (eα2 − 1 − α2)/α
2
2

0 1

)

and

∂α

∂A
=

( α2
eα2 − 1

α1
α2

− α1
1

1 − e−α2

0 1

)

from these the raising operators, recursion operators and

ACS representation can be found as prescribed.
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9 Concluding Remarks

⋆ There are many points for continued study. By

specializing the coordinates one can find certain elements of

the Lie algebra that generate classically interesting

polynomials, such as Hermite polynomials via the

Heisenberg algebra.

⋆ The polynomials found in the approach indicated here

have particular structure depending on the Lie algebra.

Exactly how these polynomials and the structure of the Lie

algebra are related in some deeper way has not been

clarified.

⋆ Another source of interest is, of course, the Jacobians.

One can look at Jacobians of the form ∂A(t)/∂A(s), for

s < t. As the Jacobians form a multiplicative family along

paths, there are some possibilities for interesting dynamical

systems, or perhaps, matrix-valued stochastic processes.

⋆ Generally speaking, it looks challenging and

interesting to get some detailed information for classes of

higher-dimensional Lie algebras. Certain classes of Lie

algebras, such as symmetric Lie algebras, may allow for

general structural results.


