Lie algebras
 Representations and
 Analytic Semigroups through
 Dual Vector Fields

Philip Feinsilver

Southern IIlinois University

Carbondale, Illinois USA 62901

CIMPA-UNESCO-VENEZUELA School
Mérida, Venezuela Jan-Feb 2006

Part IV. Polynomials

Orthogonal families

Appell states

Canonical polynomials from Lie algebras

\triangleright Orthogonal families

Appell states

Canonical polynomials from Lie algebras

- Orthogonal polynomials may be described in terms of Fourier-Laplace transforms.
- Measure $p(d x)$ functions $\phi_{n}(x)$ are orthogonal to all polynomials of degree less than n if and only if $V_{n}(s)$

$$
V_{n}(s)=\int_{-\infty}^{\infty} e^{s x} \phi_{n}(x) p(d x)
$$

has a zero of order n at $s=0$.

- Follows by

$$
\left.\left(\frac{d}{d s}\right)^{k}\right|_{0} V_{n}(s)=\int_{-\infty}^{\infty} x^{k} \phi_{n}(x) p(d x)
$$

- If the $\phi_{n}(x)$ are polynomials they form a sequence of orthogonal polynomials.

2 Orthogonal polynomials via kernels

- Kernels

$$
K(x, z, A)
$$

forming a group under convolution

$$
\int_{-\infty}^{\infty} K(x-y, z, A) K\left(y, z^{\prime}, A^{\prime}\right) d y=K\left(x, z+z^{\prime}, A^{\prime \prime}\right)
$$

- Multiplicative family

$$
\hat{K}(s, z, A)=\int_{-\infty}^{\infty} e^{s y} K(y, z, A) d y
$$

Then

$$
\hat{K}(s, z, A) \hat{K}\left(s, z, '^{\prime} A^{\prime}\right)=\hat{K}\left(s, z+z^{\prime}, A^{\prime \prime}\right)
$$

- Form the product that integrates to $K\left(x, 0, A^{\prime \prime}\right)$, independent of z

$$
K(x-y,-z, A) K\left(y, z, A^{\prime}\right)
$$

- Generating function for the orthogonal functions

$$
K(x-y,-z, A) K\left(y, z, A^{\prime}\right)=\sum z^{n} H_{n}\left(x, y ; A, A^{\prime}\right)
$$

- By construction

$$
\int_{-\infty}^{\infty} H_{n}\left(x, y ; A, A^{\prime}\right) d y=0
$$

- To get orthogonality with respect to all polynomials of degree less than n

$$
\begin{aligned}
\sum z^{n} & \int_{-\infty}^{\infty} y^{k} H_{n}\left(x, y ; A, A^{\prime}\right) d y \\
& =\int_{-\infty}^{\infty} y^{k} K(x-y,-z, A) K\left(y, z, A^{\prime}\right) d y
\end{aligned}
$$

where the terms of the summation must vanish for $k<n$.
I.e., this must reduce to a polynomial in z of degree k.

- Or the Fourier-Laplace transform must have terms with zeros of the corresponding order.

3 Natural exponential families

- Means form an additive group for a convolution family of measures.
- The densities provide kernels of the form $K(x, z, A)$, where z is the mean, and A, e.g., is the variance, or other parameters determining the distribution.
- Gaussian distributions $K(x, z, A)=\frac{e^{-(x-z)^{2} /(2 A)}}{\sqrt{2 \pi A}}$ Note that the means and variances are additive.
- Natural exponential families allow for parametrization by the means.

Consider MGF $M(s)=\int_{\mathbf{R}} e^{s x} p(d x)$. The NEF

$$
p_{s}(d x)=M(s)^{-1} e^{s x} p(d x)
$$

has means $\mu(s)=M^{\prime}(s) / M(s)$.

4 Bernoulli systems

- Bernoulli system is a canonical Appell system such that the basis $\psi_{n}=R^{n} \Omega$ is orthogonal.
- Define the generating function

$$
\omega^{t}(z, x)=\sum_{n \geq 0} \frac{z^{n}}{n!} \phi_{n}
$$

where $\phi_{n}=n!\psi_{n} / \gamma_{n}$.

- Consider a Bernoulli system in $d \geq 1$ dimensions with canonical operator V and Hamiltonian H.

$$
e^{z_{\mu} x_{\mu}-t H(z)}=\sum_{n \geq 0} \frac{V(z)^{n}}{n!} \psi_{n}
$$

- Fourier-Laplace transform of ω_{t} times the measure of orthogonality turns out to be

$$
\int e^{s y} \omega^{t}(z, y) p_{t}(d y)=e^{z V(s)+t H(s)}
$$

- Expanding in powers of z yields the relation

$$
\int_{-\infty}^{\infty} e^{s y} \phi_{n}(y) p_{t}(d y)=V(s)^{n} e^{t H(s)}
$$

so that $V(0)=0$ is all we need to conclude that the ϕ_{n} are an orthogonal family.

- The function $V(z)$ is normalized to

$$
V^{\prime}(0)=V^{\prime \prime}(0)=1 . \text { And } V(0)=H(0)=0
$$

- We take t as our parameter A and

$$
K(x, z, A)=\omega^{A}(z, x) p_{A}(x)
$$

- For $\omega^{A}(z, x) \geq 0$, these are a family of probability measures with mean $z+\mu A$, and variance $z+\sigma^{2} A$, where μ and σ^{2} are the mean and variance respectively of p_{1}.

- From the basic construction

$$
\begin{aligned}
& K(x-y,-z, A) K(y, z, B)= \\
& \quad \omega^{A}(-z, x-y) \omega^{B}(z, y) p_{A}(x-y) p_{B}(y)
\end{aligned}
$$

- $H_{n}(x, y ; A, B)=$

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \phi_{k}(x-y, A) \phi_{n-k}(y, B) p_{A}(x-y) p_{B}(y)
$$

$$
\phi_{n}(x, y ; A, B)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \phi_{k}(x-y, A) \phi_{n-k}(y, B)
$$

- Measure of orthogonality $p_{A}(x-y) p_{B}(y) / p_{A+B}(x)$.
- Proof of orthogonality is based on an addition formula for $V(s)$.

5 New families from old

For the Meixner classes, i.e., the Bernoulli systems in one variable corresponding to $\mathrm{sl}(2)$,
we have the corresponding classes generated as follows:

- Gaussian \longrightarrow Gaussian
- Poisson \longrightarrow Krawtchouk
- Laguerre \longrightarrow Jacobi
- Binomial (3 types) \longrightarrow Hahn (3 types)

Observe that for the binomial types, this is essentially the construction of Clebsch-Gordan coefficients for real forms of $\mathrm{sl}(2)$. This construction works for the multivariate case as well.

Probabilistically, we are looking at the distribution of X_{1} given $X_{1}+X_{2}$, where X_{2} is an independent copy of X_{1}.

Orthogonal families

\triangleright Appell states

Canonical polynomials from Lie algebras

6 Definition

- Given a probability measure $p(d x)$ and a family of square-integrable functions $F(s, x)$

$$
M(s)=\langle F(s, X)\rangle
$$

- Appell states with respect to the measure p and the family F are the functions

$$
\Psi_{s}(x)=F(s, x) / M(s)
$$

That is, the Ψ_{s} are the functions F normalized to have unit expectation.

- States comes from physics terminology denoting a function of unit norm in L^{2} of p.
- Typical choices of the family F are

1. $F(s, x)=e^{s x}$ giving Fourier-Laplace transforms
2. $F(s, x)=(1-s x)^{-1}$ corresponding to Stieltjes transforms.

7 Expansion in orthogonal polynomials

- The main feature is that the family $F(s, x)$ are eigenfunctions of an operator X_{s}

$$
X_{s} F(s, x)=x F(s, x)
$$

- The family of orthogonal polynomials is

$$
\left\{\phi_{n}\right\} \text { with squared norms } \gamma_{n}=\left\|\phi_{n}\right\|^{2}
$$

- Transforms are defined by

$$
\left\langle\phi_{n}, \Psi_{s}\right\rangle=V_{n}(s)
$$

Thus, we have the expansion (assuming completeness)

$$
\Psi_{s}=\sum_{n \geq 0} V_{n}(s) \phi_{n}(x) / \gamma_{n}
$$

- In terms of the family F

$$
F(s, x)=M(s) \sum_{n \geq 0} V_{n}(s) \phi_{n}(x) / \gamma_{n}
$$

8 Recurrence relations for orthogonal polynomials

- Three-term recurrence is of the form

$$
x \phi_{n}=c_{n} \phi_{n+1}+a_{n} \phi_{n}+b_{n} \phi_{n-1}
$$

with initial conditions $\phi_{-1}=0, \phi_{0}=1$.

- The recurrence relation implies

$$
\phi_{1}(x)=\left(x-a_{0}\right) / c_{0}
$$

- Theorem

Let $F(0, x)=1, X_{s} F(s, x)=x F(s, x)$. Then
$M(s)^{-1} X_{s}\left(M(s) V_{n}(s)\right)=c_{n} V_{n+1}+a_{n} V_{n}+b_{n} V_{n-1}$
with $V_{0}=1, V_{1}=c_{0}^{-1}\left(M^{-1} X_{s} M-a_{0}\right)$.

We illustrate for the Meixner case.

9 Exponential families

- For $F(s, x)=e^{s x}$, we have $M(s)=\left\langle e^{s X}\right\rangle$, the MGF and

$$
X_{s}=\frac{d}{d s}
$$

- The exponential function $e^{s x}$ has the expansion in orthogonal polynomials

$$
e^{s x}=M(s) \sum_{n \geq 0} V_{n}(s) \phi_{n}(x) / \gamma_{n}
$$

where the coefficients $V_{n}, n \geq 1$,
satisfy the recurrence formula

$$
V_{n}^{\prime}+c_{0} V_{1} V_{n}=c_{n} V_{n+1}+\left(a_{n}-a_{0}\right) V_{n}+b_{n} V_{n-1}
$$

with $V_{0}(s)=1$ and

$$
V_{1}(s)=c_{0}^{-1}\left(\frac{M^{\prime}(s)}{M(s)}-a_{0}\right)
$$

9.1 Meixner systems

- These arise when we have the special form

$$
V_{n}(s)=V(s)^{n}
$$

where, in particular, $V_{1}(s)=V(s)$.

- We have the expansion

$$
e^{s x}=M(s) \sum_{n \geq 0} V(s)^{n} \phi_{n}(x) / \gamma_{n}
$$

- with $V(s)=c_{0}^{-1}\left(\frac{M^{\prime}(s)}{M(s)}-a_{0}\right)$
- And V satisfies the Riccati differential equation

$$
V^{\prime}=\gamma+2 \alpha V+\beta V^{2}
$$

- The recurrence formula for the orthogonal polynomials is

$$
x \phi_{n}=\left(c_{0}+\beta n\right) \phi_{n+1}+\left(a_{0}+2 \alpha n\right) \phi_{n}+\gamma n \phi_{n-1}
$$

10 Canonical description of Meixner classes

- Six families of orthogonal polynomials that are canonical Appell systems.
- The V and H operators take the form

Meixner

$$
V(z)=\frac{\tanh q z}{q-\alpha \tanh q z} \quad H(z)=-\frac{\alpha}{\beta} z-\log \frac{q V(z)}{\sinh q z}
$$

$$
\text { Meixner-Pollaczek } \quad V(z)=\tan z \quad H(z)=\log \sec z
$$

Krawtchouk

$$
V(z)=\tanh z \quad H(z)=\log \cosh z
$$

Charlier

$$
V(z)=e^{z}-1 \quad H(z)=e^{z}-1-z
$$

$$
V(z)=z /(1-z) \quad H(z)=-\log (1-z)-z
$$

Hermite $V(z)=z \quad H(z)=z^{2} / 2$

- Parameters are α, β with $q^{2}=\alpha^{2}-\beta$.

We will see how these arise by specialization from families of canonical polynomials for Lie algebras. They come from some basic Lie algebras, namely, sl(2), HW, and osc.

Orthogonal families

Appell states

\triangleright Canonical polynomials from Lie algebras

11 Flow of the group law

- The left dual vector field $\quad X^{\ddagger}=\alpha_{\mu} \xi_{\mu}^{\ddagger}$ generates the flow of the group law

$$
\exp \left(t X^{\ddagger}\right) f(A)=f(A(\alpha t) \odot A)
$$

Setting $t=1$ we have

$$
e^{X^{\ddagger}} f(A)=f(A(\alpha) \odot A)
$$

- Let $\quad \hat{X}=\alpha_{\mu} \hat{\xi}_{\mu}$ be the double dual realization of X. In terms of (x, D) variables, it is the dvf to X^{\ddagger}.
- The Main Observation for dvf's gives

$$
e^{\hat{X}} e^{a x}=e^{(A(\alpha) \odot a) x}
$$

- Compare with

$$
e^{\alpha_{\mu} Y_{\mu}} e^{a x}=e^{x_{\mu} U_{\mu}(V(a)+\alpha)}
$$

our main formula for dvf's in the abelian case.

11.1 Main theorem

Group elements generated by the double dual \hat{X} and group elements generated by the canonical variable $\alpha_{\mu} Y_{\mu}$ give the same result on the vacuum state

$$
e^{\hat{X}} 1=\exp (x \cdot A(\alpha))=e^{\alpha_{\mu} Y_{\mu}} 1=\exp (x \cdot U(\alpha))
$$

- Correspondence of the momentum variables with the A coordinates is

$$
D \leftrightarrow A, \quad V \leftrightarrow \alpha
$$

Thus, the canonical operators Y_{i} are given as

$$
Y_{i}=x_{\mu} W_{\mu i}(D)
$$

where W is the inverse Jacobian matrix of the coordinate map $A \rightarrow \alpha$.

- Express $\partial A / d \alpha$ in the A variables, then replace every A_{i} by the corresponding D_{i}.

We have a Lie canonical system of polynomials $\left\{y_{n}\right\}$

$$
e^{x \cdot A(\alpha)}=\sum_{n \geq 0} \frac{\alpha^{n}}{n!} y_{n}(x)
$$

12

 Cartan decomposition- Family of commuting self-adjoint operators are the quantum observables for the system.
- We want the Lie algebra to be a symmetric Lie algebra Raising operators $\mathcal{P} \longleftrightarrow$ Lowering operators \mathcal{L}
so that \mathfrak{g} has the Cartan decomposition

$$
\mathfrak{g}=\mathcal{L} \oplus \mathcal{K} \oplus \mathcal{P}
$$

with the relations

$$
[\mathcal{L}, \mathcal{P}] \subset \mathcal{K}, \quad[\mathcal{K}, \mathcal{L}] \subset \mathcal{L}, \quad[\mathcal{K}, \mathcal{P}] \subset \mathcal{P}
$$

\mathcal{L} and \mathcal{P} are abelian subalgebras that generate \mathfrak{g} as a Lie algebra.

- Inner product so that $L_{i}^{*}=R_{i}$ making \mathfrak{g} a "Lie*-algebra".
- Self-adjoint operators of interest have the general form

$$
X_{i}=R_{i}+K_{i}+L_{i}
$$

A commuting family of such X_{i} will be the quantum observables.

13

- The coordinate map is

$$
A_{1}=\alpha_{1}, \quad A_{2}=\alpha_{2}+\frac{1}{2} \alpha_{1} \alpha_{3}, \quad A_{3}=\alpha_{3}
$$

- From the double dual

$$
\begin{aligned}
& \exp \left(\alpha_{1} R_{1}+\alpha_{2} R_{2}+\alpha_{3}\left(R_{3}+R_{2} V_{1}\right)\right) 1= \\
& \quad \exp \left(\alpha_{1} R_{1}+\left(\alpha_{2}+\frac{1}{2} \alpha_{1} \alpha_{3}\right) R_{2}+\alpha_{3} R_{3}\right) 1
\end{aligned}
$$

- Note that R_{3} and $\alpha_{2} R_{2}$ drop out.

Setting $R_{2}=t$, $\alpha_{1}=\alpha_{3}=z$, we get, using $R=R_{1}$ as our raising operator,

$$
\exp (z(R+t V)) 1=e^{z R+z^{2} t / 2} 1
$$

- Our quantum observable is $X=R+t V$, with spectral variable x. With $v=z$,

$$
e^{v R} 1=e^{v x-v^{2} t / 2}
$$

the generating function for the Hermite polynomials for the corresponding Gaussian distribution.

We have recovered our example of Chapter 1.

14 sl(2)

- The coordinate map is: $\quad A_{1}=\frac{\alpha_{1} \tanh \delta}{\delta-\alpha_{2} \tanh \delta}$

$$
A_{2}=\log \frac{\delta \operatorname{sech} \delta}{\delta-\alpha_{2} \tanh \delta}, A_{3}=\frac{\alpha_{3} \tanh \delta}{\delta-\alpha_{2} \tanh \delta}
$$

where $\delta=\sqrt{\alpha_{2}^{2}-\alpha_{1} \alpha_{3}}$.

- The double dual is: $\quad \hat{\xi}_{1}=R_{1}$

$$
\hat{\xi}_{2}=R_{2}+2 R_{1} V_{1}, \quad \hat{\xi}_{3}=R_{3} e^{2 V_{2}}+R_{2} V_{1}+R_{1} V_{1}^{2}
$$

- Now take $\quad \alpha_{1} \rightarrow z, \alpha_{2} \rightarrow \alpha z, \alpha_{3} \rightarrow \beta z$, and $\delta \rightarrow q z, q^{2}=\alpha^{2}-\beta$. Noting that R_{3} drops out, send $R_{2} \rightarrow t$, and use $R=R_{1}$ as our raising operator to yield

$$
e^{z X} 1=\left(\frac{q \operatorname{sech} q z}{q-\alpha \tanh q z}\right)^{t} \exp \left(\frac{\tanh q z}{q-\alpha \tanh q z} R\right) 1
$$

- Our quantum random variable is

$$
X=R+\alpha t+2 \alpha R V+\beta\left(t V+R V^{2}\right)
$$

- With spectral variable x, this is of the form

$$
e^{z x}=e^{t H(z)} e^{V(z) R} 1
$$

and solving for $e^{v R} 1$ gives the generating function for the corresponding class of polynomials as a canonical Appell system

$$
e^{v R} 1=e^{x U(v)-t H(U(v))}
$$

- Various specializations lead to the Meixner classes for Bernoulli, negative binomial and continuous binomial (hyperbolic) distributions.
- The gamma/exponential family is an interesting limiting case where $q \rightarrow 0$. We get, then, with $\beta=\alpha^{2}$,

$$
e^{z X} 1=(1-\alpha z)^{-t} \exp \left(R \frac{z}{1-\alpha z}\right) 1
$$

and solving for $z=U(v)=\frac{v}{1+\alpha v}$ yields the generating function for Laguerre polynomials in an appropriate normalization.

- The Poisson and Gaussian are limiting cases as well.

15 Oscillator algebra

- For the oscillator algebra we have the coordinate map

$$
\begin{aligned}
& A_{1}=\frac{\alpha_{1}}{\alpha_{4}}\left(e^{\alpha_{4}}-1\right), \quad A_{2}=\alpha_{2}+\frac{\alpha_{1} \alpha_{3}}{\alpha_{4}^{2}}\left(e^{\alpha_{4}}-1-\alpha_{4}\right) \\
& A_{3}=\frac{\alpha_{3}}{\alpha_{4}}\left(1-e^{-\alpha_{4}}\right), \quad A_{4}=\alpha_{4}
\end{aligned}
$$

- The double dual is
$\hat{\xi}_{1}=R_{1}, \quad \hat{\xi}_{2}=R_{2}, \quad \hat{\xi}_{3}=R_{3}+R_{2} V_{1}$,
$\hat{\xi}_{4}=R_{4}+R_{1} V_{1}-R_{3} V_{3}$
- We take $\quad \alpha_{4} \rightarrow \alpha z, \alpha_{1} \rightarrow z, \alpha_{3} \rightarrow \beta z$, with R_{4} dropping out and get, setting $R_{2}=t$,
$e^{z X+z Y} 1=$

$$
\begin{aligned}
& \exp \left(R_{1}\left(e^{\alpha z}-1\right) / \alpha\right) \\
& \exp \left(\beta t\left(e^{\alpha z}-1-\alpha z\right) / \alpha^{2}\right) \exp \left(R_{3} \beta\left(1-e^{-\alpha z}\right) / \alpha\right) 1
\end{aligned}
$$

- where

$$
X=R_{1}+\alpha R_{1} V_{1}+\beta t V_{1}
$$

and

$$
Y=\beta R_{3}-\alpha R_{3} V_{3}
$$

- The Y term gives an independent aff(2).
- The X term gives, with $R \rightarrow R_{1}$,

$$
e^{v R} 1=(1+\alpha v)^{x / \alpha+\beta t / \alpha^{2}} \exp (-v \beta t / \alpha)
$$

which is the generating function for Poisson-Charlier polynomials for a scaled Poisson process with drift.

- Observe that in each case, the formula for X in terms of R and V gives the three-term recurrence relation for the corresponding orthogonal polynomials.

16 Procedure

1. Cartan decomposition.
2. Find coordinate mapping.
3. Exponentiate the double dual.
4. Arrange into commuting operators of the form

$$
X=R+K+L
$$

5. Group elements generated by raising operators acting on the vacuum are generating functions for the basis of the representation.
6. Expectation values of group elements generated by X operators interpreted as moment generating functions yield the spectral measures.
