Lie algebras
Representations
and
Analytic Semigroups
through
Dual Vector Fields

Philip Feinsilver

Southern Illinois University

Carbondale, Illinois USA 62901

CIMPA-UNESCO-VENEZUELA School
Mérida, Venezuela
Jan-Feb 2006
Part IV. Polynomials

Orthogonal families

Appell states

Canonical polynomials from Lie algebras
Orthogonal families

Appell states

Canonical polynomials from Lie algebras
Orthogonal polynomials and Fourier transform

- **Orthogonal polynomials** may be described in terms of Fourier-Laplace transforms.

- **Measure** $p(dx)$ functions $\phi_n(x)$ are orthogonal to all polynomials of degree less than n if and only if $V_n(s)$

$$V_n(s) = \int_{-\infty}^{\infty} e^{sx} \phi_n(x) p(dx)$$

has a zero of order n at $s = 0$.

- **Follows by**

$$\left(\frac{d}{ds} \right)^k V_n(s) = \int_{-\infty}^{\infty} x^k \phi_n(x) p(dx)$$

- **If the $\phi_n(x)$ are polynomials** they form a sequence of orthogonal polynomials.
2 Orthogonal polynomials via kernels

• Kernels

\[K(x, z, A) \]

forming a group under convolution

\[
\int_{-\infty}^{\infty} K(x-y, z, A) K(y, z', A') \, dy = K(x, z+z', A'')
\]

• Multiplicative family

\[\hat{K}(s, z, A) = \int_{-\infty}^{\infty} e^{sy} K(y, z, A) \, dy \]

Then

\[
\hat{K}(s, z, A) \hat{K}(s, z', A') = \hat{K}(s, z+z', A'')
\]

• Form the product that integrates to \(K(x, 0, A'') \), independent of \(z \)

\[K(x - y, -z, A) K(y, z, A') \]
• Generating function for the orthogonal functions

\[K(x - y, -z, A)K(y, z, A') = \sum z^n H_n(x, y; A, A') \]

• By construction

\[\int_{-\infty}^{\infty} H_n(x, y; A, A') \, dy = 0 \]

• To get orthogonality with respect to all polynomials of degree less than \(n \)

\[\sum z^n \int_{-\infty}^{\infty} y^k H_n(x, y; A, A') \, dy \]

\[= \int_{-\infty}^{\infty} y^k K(x - y, -z, A)K(y, z, A') \, dy \]

where the terms of the summation must vanish for \(k < n \).

I.e., this must reduce to a polynomial in \(z \) of degree \(k \).

• Or the Fourier-Laplace transform must have terms with zeros of the corresponding order.
3 Natural exponential families

- **Means form an additive group** for a convolution family of measures.

- **The densities** provide kernels of the form $K(x, z, A)$, where z is the mean, and A, e.g., is the variance, or other parameters determining the distribution.

- **Gaussian distributions**

 $$K(x, z, A) = \frac{e^{-(x-z)^2/(2A)}}{\sqrt{2\pi A}}$$

 Note that the means and variances are additive.

- **Natural exponential families** allow for parametrization by the means.

Consider MGF $M(s) = \int_{\mathbb{R}} e^{sx} p(dx)$. The NEF

$$p_s(dx) = M(s)^{-1} e^{sx} p(dx)$$

has means $\mu(s) = M'(s)/M(s)$.
4 Bernoulli systems

- **Bernoulli system** is a canonical Appell system such that the basis \(\psi_n = R^n \Omega \) is orthogonal.

- Define the generating function

\[
\omega^t(z, x) = \sum_{n \geq 0} \frac{z^n}{n!} \phi_n
\]

where \(\phi_n = n! \psi_n / \gamma_n \).

- Consider a Bernoulli system in \(d \geq 1 \) dimensions with canonical operator \(V \) and Hamiltonian \(H \).

\[
e^{z \mu x_\mu - t H(z)} = \sum_{n \geq 0} \frac{V(z)^n}{n!} \psi_n
\]

- Fourier-Laplace transform of \(\omega_t \) times the measure of orthogonality turns out to be

\[
\int e^{sy} \omega^t(z, y) p_t(dy) = e^{z V(s) + t H(s)}
\]
• **Expanding in powers of** z **yields the relation**

$$\int_{-\infty}^{\infty} e^{sy} \phi_n(y) p_t(dy) = V(s)^n e^{tH(s)}$$

so that $V(0) = 0$ is all we need to conclude that the ϕ_n are an orthogonal family.

• **The function** $V(z)$ **is normalized to**

$V'(0) = V''(0) = 1$. And $V(0) = H(0) = 0$.

• **We take** t **as our parameter** A **and**

$$K(x, z, A) = \omega^A(z, x)p_A(x)$$

• **For** $\omega^A(z, x) \geq 0$, **these are a family of probability measures** with mean $z + \mu A$, and variance $z + \sigma^2 A$,

where μ and σ^2 are the mean and variance respectively of p_1.

• From the basic construction

\[K(x - y, -z, A)K(y, z, B) = \]
\[\omega^A(-z, x - y)\omega^B(z, y) p_A(x - y)p_B(y) \]

• \(H_n(x, y; A, B) = \)
\[\sum_{k=0}^{n} \binom{n}{k} (-1)^k \phi_k(x-y, A)\phi_{n-k}(y, B) p_A(x-y)p_B(y) \]

with corresponding orthogonal polynomials

\[\phi_n(x, y; A, B) = \sum_{k=0}^{n} \binom{n}{k} (-1)^k \phi_k(x-y, A)\phi_{n-k}(y, B) \]

• Measure of orthogonality \(p_A(x - y)p_B(y)/p_{A+B}(x) \).

• Proof of orthogonality is based on an addition formula for \(V(s) \).
New families from old

For the Meixner classes, i.e., the Bernoulli systems in one variable corresponding to $\text{sl}(2)$,

we have the corresponding classes generated as follows:

- **Gaussian** \rightarrow Gaussian
- **Poisson** \rightarrow Krawtchouk
- **Laguerre** \rightarrow Jacobi
- **Binomial** (3 types) \rightarrow Hahn (3 types)

Observe that for the binomial types, this is essentially the construction of **Clebsch-Gordan coefficients** for real forms of $\text{sl}(2)$. This construction works for the multivariate case as well.

Probabilistically, we are looking at the distribution of X_1 given $X_1 + X_2$, where X_2 is an independent copy of X_1.
Orthogonal families

▷ Appell states

Canonical polynomials from Lie algebras
Definition

- **Given a probability measure** \(p(dx) \) and a family of square-integrable functions \(F(s, x) \)
 \[
 M(s) = \langle F(s, X) \rangle
 \]

- **Appell states** with respect to the measure \(p \)

 and the family \(F \) are the functions
 \[
 \Psi_s(x) = \frac{F(s, x)}{M(s)}
 \]

 That is, the \(\Psi_s \) are the functions \(F \) normalized to have unit expectation.

- **States** comes from physics terminology denoting a function of unit norm in \(L^2 \) of \(p \).

- **Typical choices** of the family \(F \) are
 1. \(F(s, x) = e^{sx} \) giving Fourier-Laplace transforms
 2. \(F(s, x) = (1 - sx)^{-1} \) corresponding to Stieltjes transforms.
7 Expansion in orthogonal polynomials

- **The main feature** is that the family $F(s, x)$ are eigenfunctions of an operator X_s

\[X_s F(s, x) = x F(s, x) \]

- **The family of orthogonal polynomials** is

\[\{ \phi_n \} \text{ with squared norms } \gamma_n = \| \phi_n \|^2 \]

- **Transforms** are defined by

\[\langle \phi_n, \Psi_s \rangle = V_n(s) \]

Thus, we have the expansion (assuming completeness)

\[\Psi_s = \sum_{n \geq 0} V_n(s) \phi_n(x) / \gamma_n \]

- **In terms of the family** F

\[F(s, x) = M(s) \sum_{n \geq 0} V_n(s) \phi_n(x) / \gamma_n \]
Recurrence relations for orthogonal polynomials

- **Three-term recurrence** is of the form
 \[x \phi_n = c_n \phi_{n+1} + a_n \phi_n + b_n \phi_{n-1} \]
 with initial conditions \(\phi_{-1} = 0, \phi_0 = 1 \).

- **The recurrence relation** implies
 \[\phi_1(x) = (x - a_0)/c_0 \]

- **Theorem**

Let \(F(0, x) = 1, X_s F(s, x) = x F(s, x) \). Then

\[M(s)^{-1} X_s (M(s)V_n(s)) = c_n V_{n+1} + a_n V_n + b_n V_{n-1} \]

with \(V_0 = 1, V_1 = c_0^{-1}(M^{-1} X_s M - a_0) \).

We illustrate for the Meixner case.
9 Exponential families

- For $F(s, x) = e^{sx}$, we have $M(s) = \langle e^{sX} \rangle$, the MGF and

 $$X_s = \frac{d}{ds}$$

- The exponential function e^{sx} has the expansion in orthogonal polynomials

 $$e^{sx} = M(s) \sum_{n \geq 0} V_n(s) \phi_n(x) / \gamma_n$$

 where the coefficients $V_n, n \geq 1$, satisfy the recurrence formula

 $$V'_n + c_0 V_1 V_n = c_n V_{n+1} + (a_n - a_0) V_n + b_n V_{n-1}$$

 with $V_0(s) = 1$ and

 $$V_1(s) = c_0^{-1} \left(\frac{M'(s)}{M(s)} - a_0 \right) .$$
9.1 Meixner systems

- These arise when we have the special form

\[V_n(s) = V(s)^n \]

where, in particular, \(V_1(s) = V(s) \).

- We have the expansion

\[e^{sx} = M(s) \sum_{n \geq 0} V(s)^n \phi_n(x) / \gamma_n \]

- with \(V(s) = c_0^{-1} \left(\frac{M'(s)}{M(s)} - a_0 \right) \)

- And \(V \) satisfies the **Riccati differential equation**

\[V' = \gamma + 2\alpha V + \beta V^2 \]

- The recurrence formula for the orthogonal polynomials is

\[x \phi_n = (c_0 + \beta n) \phi_{n+1} + (a_0 + 2\alpha n) \phi_n + \gamma n \phi_{n-1} \]
10 Canonical description of Meixner classes

• **Six families of orthogonal polynomials** that are canonical Appell systems.

• The V and H operators take the form

Meixner

\[
V(z) = \frac{\tanh qz}{q - \alpha \tanh qz} \quad H(z) = -\frac{\alpha}{\beta}z - \log \frac{qV(z)}{\sinh qz}
\]

Meixner-Pollaczek

\[
V(z) = \tan z \quad H(z) = \log \sec z
\]

Krawtchouk

\[
V(z) = \tanh z \quad H(z) = \log \cosh z
\]

Charlier

\[
V(z) = e^z - 1 \quad H(z) = e^z - 1 - z
\]

Laguerre

\[
V(z) = z/(1 - z) \quad H(z) = -\log(1 - z) - z
\]

Hermite

\[
V(z) = z \quad H(z) = z^2/2
\]

• **Parameters** are α, β with $q^2 = \alpha^2 - \beta$.

We will see how these arise by specialization from families of canonical polynomials for Lie algebras. They come from some basic Lie algebras, namely, sl(2), HW, and osc.
Orthogonal families

Appell states

▷ Canonical polynomials from Lie algebras
11 Flow of the group law

• **The left dual** vector field \(X^\dagger = \alpha_{\mu} \xi^\dagger_{\mu} \) generates the flow of the group law

\[
\exp(tX^\dagger) f(A) = f(A(\alpha t) \odot A)
\]

Setting \(t = 1 \) we have

\[
e^{X^\dagger} f(A) = f(A(\alpha) \odot A)
\]

• **Let** \(\hat{X} = \alpha_{\mu} \hat{\xi}_{\mu} \) be the double dual realization of \(X \).

In terms of \((x, D)\) variables, it is the dvf to \(X^\dagger \).

• **The Main Observation** for dvf’s gives

\[
e^{\hat{X}} e^{a x} = e^{(A(\alpha) \odot a) x}
\]

• **Compare with**

\[
e^{\alpha_{\mu} Y_{\mu}} e^{a x} = e^{x_{\mu} U_{\mu} (V(a)+\alpha)}
\]

our main formula for dvf’s in the abelian case.
11.1 Main theorem

Group elements generated by the double dual \hat{X} and group elements generated by the canonical variable $\alpha_\mu Y_\mu$ give the same result on the vacuum state

$$ e^{\hat{X}} 1 = \exp(x \cdot A(\alpha)) = e^{\alpha_\mu Y_\mu} 1 = \exp(x \cdot U(\alpha)) $$

- **Correspondence** of the momentum variables with the A coordinates is

 $$ D \leftrightarrow A, \quad V \leftrightarrow \alpha $$

Thus, the canonical operators Y_i are given as

$$ Y_i = x_\mu W_{\mu i}(D) $$

where W is the inverse Jacobian matrix of the coordinate map $A \rightarrow \alpha$.

- **Express** $\partial A/d\alpha$ in the A variables, then replace every A_i by the corresponding D_i.

We have a **Lie canonical system** of polynomials $\{y_n\}$

$$ e^{x \cdot A(\alpha)} = \sum_{n \geq 0} \frac{\alpha^n}{n!} y_n(x) $$
12 Cartan decomposition

- **Family of commuting self-adjoint operators** are the quantum observables for the system.
- We want the Lie algebra to be a **symmetric Lie algebra**

 Raising operators $\mathcal{P} \leftrightarrow$ Lowering operators \mathcal{L}

so that \mathfrak{g} has the **Cartan decomposition**

$$\mathfrak{g} = \mathcal{L} \oplus \mathcal{K} \oplus \mathcal{P}$$

with the relations

$$[\mathcal{L}, \mathcal{P}] \subset \mathcal{K}, \quad [\mathcal{K}, \mathcal{L}] \subset \mathcal{L}, \quad [\mathcal{K}, \mathcal{P}] \subset \mathcal{P}$$

\mathcal{L} and \mathcal{P} are **abelian subalgebras** that generate \mathfrak{g} as a Lie algebra.

- **Inner product** so that $L_i^* = R_i$ making \mathfrak{g} a “Lie*-algebra”.

- **Self-adjoint operators** of interest have the general form

$$X_i = R_i + K_i + L_i$$

A commuting family of such X_i will be the quantum observables.
The coordinate map is

\[A_1 = \alpha_1, \quad A_2 = \alpha_2 + \frac{1}{2} \alpha_1 \alpha_3, \quad A_3 = \alpha_3 \]

From the double dual

\[
\exp(\alpha_1 R_1 + \alpha_2 R_2 + \alpha_3 (R_3 + R_2 V_1)) 1 = \\
\exp(\alpha_1 R_1 + (\alpha_2 + \frac{1}{2} \alpha_1 \alpha_3) R_2 + \alpha_3 R_3) 1
\]

Note that \(R_3 \) and \(\alpha_2 R_2 \) drop out.

Setting \(R_2 = t, \alpha_1 = \alpha_3 = z \), we get, using \(R = R_1 \) as our raising operator,

\[
\exp(z(R + tV)) 1 = e^{zR + z^2 t/2} 1
\]

Our quantum observable is \(X = R + tV \), with spectral variable \(x \). With \(v = z \),

\[e^{vR} 1 = e^{vx - v^2 t/2} \]

the generating function for the Hermite polynomials for the corresponding Gaussian distribution.

We have recovered our example of Chapter 1.
The coordinate map is:

\[A_1 = \frac{\alpha_1 \tanh \delta}{\delta - \alpha_2 \tanh \delta}, \quad A_2 = \log \frac{\delta \sech \delta}{\delta - \alpha_2 \tanh \delta}, \quad A_3 = \frac{\alpha_3 \tanh \delta}{\delta - \alpha_2 \tanh \delta} \]

where \(\delta = \sqrt{\alpha_2^2 - \alpha_1 \alpha_3} \).

The double dual is:

\[\hat{\xi}_1 = R_1, \quad \hat{\xi}_2 = R_2 + 2R_1 V_1, \quad \hat{\xi}_3 = R_3 e^{2V_2} + R_2 V_1 + R_1 V_1^2 \]

Now take \(\alpha_1 \to z, \alpha_2 \to \alpha z, \alpha_3 \to \beta z, \) and \(\delta \to qz, q^2 = \alpha^2 - \beta \). Noting that \(R_3 \) drops out, send \(R_2 \to t \), and use \(R = R_1 \) as our raising operator to yield

\[e^{zX_1} = \left(\frac{q \sech qz}{q - \alpha \tanh qz} \right)^t \exp \left(\frac{\tanh qz}{q - \alpha \tanh qz} R \right) \]

Our quantum random variable is

\[X = R + \alpha t + 2\alpha RV + \beta(tV + RV^2) \]
• **With spectral variable** x, this is of the form

$$e^{zx} = e^{tH(z)}e^{V(z)R1}$$

and solving for e^{vR1} gives the generating function for the corresponding class of polynomials as a canonical Appell system

$$e^{vR1} = e^{xU(v) - tH(U(v))}$$

• **Various specializations** lead to the Meixner classes for Bernoulli, negative binomial and continuous binomial (hyperbolic) distributions.

• **The gamma/exponential** family is an interesting limiting case where $q \to 0$. We get, then, with $\beta = \alpha^2$,

$$e^{zx}1 = (1 - \alpha z)^{-t} \exp \left(R \frac{z}{1 - \alpha z} \right) 1$$

and solving for $z = U(v) = \frac{v}{1 + \alpha v}$ yields the generating function for Laguerre polynomials in an appropriate normalization.

• The Poisson and Gaussian are limiting cases as well.
For the oscillator algebra we have the coordinate map

\[A_1 = \frac{\alpha_1}{\alpha_4} (e^{\alpha_4} - 1), \quad A_2 = \alpha_2 + \frac{\alpha_1 \alpha_3}{\alpha_4^2} (e^{\alpha_4} - 1 - \alpha_4), \]

\[A_3 = \frac{\alpha_3}{\alpha_4} (1 - e^{-\alpha_4}), \quad A_4 = \alpha_4. \]

The double dual is

\[\hat{\xi}_1 = R_1, \quad \hat{\xi}_2 = R_2, \quad \hat{\xi}_3 = R_3 + R_2 V_1, \]

\[\hat{\xi}_4 = R_4 + R_1 V_1 - R_3 V_3 \]

We take \(\alpha_4 \to \alpha z, \alpha_1 \to z, \alpha_3 \to \beta z, \)

with \(R_4 \) dropping out and get, setting \(R_2 = t, \)

\[e^{zX+zY} = \exp(R_1 (e^{\alpha z} - 1)/\alpha) \cdot \exp(\beta t(e^{\alpha z} - 1 - \alpha z)/\alpha^2) \exp(R_3 \beta(1 - e^{-\alpha z})/\alpha) 1 \]
where

\[X = R_1 + \alpha R_1 V_1 + \beta t V_1 \]

and

\[Y = \beta R_3 - \alpha R_3 V_3 \]

- **The** \(Y \) **term** gives an independent \(\text{aff}(2) \).

- **The** \(X \) **term** gives, with \(R \to R_1 \),

\[
 e^{vR_1} = (1 + \alpha v)^{x/\alpha + \beta t/\alpha^2} \exp(-v\beta t/\alpha)
\]

which is the generating function for **Poisson-Charlier polynomials** for a scaled Poisson process with drift.

- **Observe** that in each case, the formula for \(X \) in terms of \(R \) and \(V \) gives the **three-term recurrence** relation for the corresponding orthogonal polynomials.
16 Procedure

1. Cartan decomposition.

2. Find coordinate mapping.

3. Exponentiate the double dual.

4. Arrange into commuting operators of the form
 \[X = R + K + L. \]

5. Group elements generated by raising operators acting on the vacuum are generating functions for the basis of the representation.

6. Expectation values of group elements generated by \(X \) operators interpreted as moment generating functions yield the spectral measures.