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1 Orthogonal polynomials and Fourier transform

• Orthogonal polynomials may be described in terms of

Fourier-Laplace transforms.

• Measure p(dx) functions φn(x) are orthogonal to all

polynomials of degree less than n if and only if Vn(s)

Vn(s) =

∫ ∞

−∞

esx φn(x) p(dx)

has a zero of order n at s = 0.

• Follows by

(

d

ds

)k∣

∣

∣

∣

0

Vn(s) =

∫ ∞

−∞

xkφn(x) p(dx)

• If the φn(x) are polynomials they form a sequence

of orthogonal polynomials.



2 Orthogonal polynomials via kernels

• Kernels

K(x, z, A)

forming a group under convolution

∫ ∞

−∞

K(x−y, z, A)K(y, z′, A′) dy = K(x, z+z′, A′′)

• Multiplicative family

K̂(s, z, A) =

∫ ∞

−∞

esy K(y, z, A) dy

Then

K̂(s, z, A)K̂(s, z,′A′) = K̂(s, z + z′, A′′)

• Form the product that integrates to K(x, 0, A′′),

independent of z

K(x− y,−z, A)K(y, z, A′)



• Generating function for the orthogonal functions

K(x− y,−z, A)K(y, z, A′) =
∑

znHn(x, y;A,A′)

• By construction

∫ ∞

−∞

Hn(x, y;A,A′) dy = 0

• To get orthogonality with respect to all polynomials of

degree less than n

∑

zn

∫ ∞

−∞

ykHn(x, y;A,A′) dy

=

∫ ∞

−∞

ykK(x− y,−z, A)K(y, z, A′) dy

where the terms of the summation must vanish for k < n.

I.e., this must reduce to a polynomial in z of degree k.

• Or the Fourier-Laplace transform must have terms with

zeros of the corresponding order.



3 Natural exponential families

• Means form an additive group for a convolution family

of measures.

• The densities provide kernels of the form K(x, z, A),

where z is the mean, and A, e.g., is the variance,

or other parameters determining the distribution.

• Gaussian distributions K(x, z, A) =
e−(x−z)2/(2A)

√

2πA

Note that the means and variances are additive.

• Natural exponential families allow for parametrization

by the means.

Consider MGF M(s) =

∫

R

esx p(dx). The NEF

ps(dx) = M(s)−1esx p(dx)

has means µ(s) = M ′(s)/M(s).



4 Bernoulli systems

• Bernoulli system is a canonical Appell system such

that the basis ψn = RnΩ is orthogonal.

• Define the generating function

ωt(z, x) =
∑

n≥0

zn

n!
φn

where φn = n!ψn/γn .

• Consider a Bernoulli system in d ≥ 1 dimensions

with canonical operator V and Hamiltonian H .

ezµxµ−tH(z) =
∑

n≥0

V (z)n

n!
ψn

• Fourier-Laplace transform of ωt times the measure of

orthogonality turns out to be

∫

esy ωt(z, y) pt(dy) = ezV (s)+tH(s)



• Expanding in powers of z yields the relation

∫ ∞

−∞

esy φn(y) pt(dy) = V (s)n etH(s)

so that V (0) = 0 is all we need to conclude that the φn are

an orthogonal family.

• The function V (z) is normalized to

V ′(0) = V ′′(0) = 1. And V (0) = H(0) = 0.

• We take t as our parameterA and

K(x, z, A) = ωA(z, x)pA(x)

• For ωA(z, x) ≥ 0, these are a family of probability

measures with mean z + µA, and variance z + σ2A,

where µ and σ2 are the mean and variance respectively of

p1.



• From the basic construction

K(x− y,−z, A)K(y, z, B) =

ωA(−z, x− y)ωB(z, y) pA(x− y)pB(y)

• Hn(x, y;A,B) =

n
∑

k=0

(

n

k

)

(−1)kφk(x−y,A)φn−k(y,B) pA(x−y)pB(y)

with corresponding orthogonal polynomials

φn(x, y;A,B) =

n
∑

k=0

(

n

k

)

(−1)kφk(x−y,A)φn−k(y,B)

• Measure of orthogonality pA(x− y)pB(y)/pA+B(x).

• Proof of orthogonality is based on an addition formula

for V (s).



5 New families from old

For the Meixner classes, i.e., the Bernoulli systems in one

variable corresponding to sl(2),

we have the corresponding classes generated as follows:

• Gaussian −→ Gaussian

• Poisson −→ Krawtchouk

• Laguerre −→ Jacobi

• Binomial (3 types) −→ Hahn (3 types)

Observe that for the binomial types, this is essentially the

construction of Clebsch-Gordan coefficients for real forms

of sl(2). This construction works for the multivariate case as

well.

Probabilistically, we are looking at the distribution of

X1 given X1 +X2, where X2 is an independent copy of

X1.
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6 Definition

• Given a probability measure p(dx) and a

family of square-integrable functions F (s, x)

M(s) = 〈F (s,X)〉

• Appell states with respect to the measure p

and the family F are the functions

Ψs(x) = F (s, x)/M(s)

That is, the Ψs are the functions F normalized to have unit

expectation.

• States comes from physics terminology denoting a

function of unit norm in L2 of p.

• Typical choices of the family F are

1. F (s, x) = esx giving Fourier-Laplace transforms

2. F (s, x) = (1− sx)−1 corresponding to Stieltjes

transforms.



7 Expansion in orthogonal polynomials

• The main feature is that the family F (s, x) are

eigenfunctions of an operatorXs

Xs F (s, x) = xF (s, x)

• The family of orthogonal polynomials is

{φn } with squared norms γn = ‖φn‖
2

• Transforms are defined by

〈φn,Ψs〉 = Vn(s)

Thus, we have the expansion (assuming completeness)

Ψs =
∑

n≥0

Vn(s)φn(x)/γn

• In terms of the family F

F (s, x) = M(s)
∑

n≥0

Vn(s)φn(x)/γn



8 Recurrence relations for orthogonal polynomials

• Three-term recurrence is of the form

xφn = cnφn+1 + anφn + bnφn−1

with initial conditions φ−1 = 0, φ0 = 1.

• The recurrence relation implies

φ1(x) = (x− a0)/c0

• Theorem

Let F (0, x) = 1, XsF (s, x) = xF (s, x). Then

M(s)−1Xs(M(s)Vn(s)) = cnVn+1 +anVn +bnVn−1

with V0 = 1, V1 = c−1
0 (M−1XsM − a0).

We illustrate for the Meixner case.



9 Exponential families

• For F (s, x) = esx , we have M(s) = 〈esX 〉, the

MGF and

Xs =
d

ds

• The exponential function esx has the expansion in

orthogonal polynomials

esx = M(s)
∑

n≥0

Vn(s)φn(x)/γn

where the coefficients Vn, n ≥ 1,

satisfy the recurrence formula

V ′
n + c0V1Vn = cnVn+1 + (an − a0)Vn + bnVn−1

with V0(s) = 1 and

V1(s) = c−1
0

(

M ′(s)

M(s)
− a0

)

.



9.1 Meixner systems

• These arise when we have the special form

Vn(s) = V (s)n

where, in particular, V1(s) = V (s).

• We have the expansion

esx = M(s)
∑

n≥0

V (s)nφn(x)/γn

• with V (s) = c−1
0

„

M ′(s)

M(s)
− a0

«

• And V satisfies the Riccati differential equation

V ′ = γ + 2αV + βV 2

• The recurrence formula for the orthogonal polynomials is

xφn = (c0 + βn)φn+1 + (a0 + 2αn)φn + γnφn−1



10 Canonical description of Meixner classes

• Six families of orthogonal polynomials that are

canonical Appell systems.

• The V and H operators take the form

Meixner

V (z) =
tanh qz

q − α tanh qz
H(z) = −

α

β
z − log

qV (z)

sinh qz

Meixner-Pollaczek V (z) = tan z H(z) = log sec z

Krawtchouk V (z) = tanh z H(z) = log cosh z

Charlier V (z) = ez
− 1 H(z) = ez

− 1 − z

Laguerre V (z) = z/(1 − z) H(z) = − log(1 − z) − z

Hermite V (z) = z H(z) = z2/2

• Parameters are α, β with q2 = α2 − β.

We will see how these arise by specialization from families

of canonical polynomials for Lie algebras. They come from

some basic Lie algebras, namely, sl(2), HW, and osc .
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11 Flow of the group law

• The left dual vector field X‡ = αµξ
‡
µ

generates the flow of the group law

exp(tX‡)f(A) = f(A(αt)⊙A)

Setting t = 1 we have

eX‡

f(A) = f(A(α)⊙A)

• Let X̂ = αµξ̂µ be the double dual realization of X .

In terms of (x,D) variables, it is the dvf to X‡.

• The Main Observation for dvf’s gives

eX̂eax = e(A(α)⊙a)x

• Compare with

eαµYµ eax = exµUµ(V (a)+α)

our main formula for dvf’s in the abelian case.



11.1 Main theorem

Group elements generated by the double dual X̂ and group

elements generated by the canonical variable αµYµ give

the same result on the vacuum state

eX̂1 = exp(x ·A(α)) = eαµYµ1 = exp(x · U(α))

• Correspondence of the momentum variables with the

A coordinates is

D ↔ A , V ↔ α

Thus, the canonical operators Yi are given as

Yi = xµWµi(D)

where W is the inverse Jacobian matrix of the coordinate

map A→ α.

• Express ∂A/dα in the A variables, then replace

every Ai by the correspondingDi.

We have a Lie canonical system of polynomials {yn}

ex·A(α) =
∑

n≥0

αn

n!
yn(x)



12 Cartan decomposition

• Family of commuting self-adjoint operators are the

quantum observables for the system.

• We want the Lie algebra to be a symmetric Lie algebra

Raising operators P ←→ Lowering operators L

so that g has the Cartan decomposition

g = L ⊕K ⊕ P

with the relations

[L,P] ⊂ K, [K,L] ⊂ L, [K,P] ⊂ P

L and P are abelian subalgebras that generate g as a Lie

algebra.

• Inner product so that L∗
i = Ri making g a

“Lie∗-algebra”.

• Self-adjoint operators of interest have the general form

Xi = Ri +Ki + Li

A commuting family of such Xi will be the quantum observables.



13 HW

• The coordinate map is

A1 = α1, A2 = α2 + 1
2α1α3, A3 = α3

• From the double dual

exp(α1R1 + α2R2 + α3(R3 +R2V1)) 1 =

exp(α1R1 + (α2 + 1
2α1α3)R2 + α3R3) 1

• Note that R3 and α2R2 drop out.

Setting R2 = t, α1 = α3 = z, we get, using R = R1 as

our raising operator,

exp(z(R+ tV )) 1 = ezR+z2t/2 1

• Our quantum observable is X = R + tV , with

spectral variable x. With v = z,

evR1 = evx−v2t/2

the generating function for the Hermite polynomials for the

corresponding Gaussian distribution.

We have recovered our example of Chapter 1.



14 sl(2)

• The coordinate map is : A1 =
α1 tanh δ

δ − α2 tanh δ

A2 = log
δ sech δ

δ − α2 tanh δ
, A3 =

α3 tanh δ

δ − α2 tanh δ

where δ =
√

α2
2 − α1α3.

• The double dual is : ξ̂1 = R1

ξ̂2 = R2 + 2R1V1, ξ̂3 = R3e
2V2 +R2V1 +R1V

2
1

• Now take α1 → z, α2 → αz, α3 → βz, and

δ → qz, q2 = α2 − β. Noting that R3 drops out, send

R2 → t, and use R = R1 as our raising operator to yield

ezX1 =

(

q sech qz

q − α tanh qz

)t

exp

(

tanh qz

q − α tanh qz
R

)

1

• Our quantum random variable is

X = R+ αt+ 2αRV + β(tV +RV 2)



• With spectral variable x, this is of the form

ezx = etH(z)eV (z)R1

and solving for evR1 gives the generating function for the

corresponding class of polynomials as a canonical Appell

system

evR1 = exU(v)−tH(U(v))

• Various specializations lead to the Meixner classes

for Bernoulli, negative binomial and continuous binomial

(hyperbolic) distributions.

• The gamma/exponential family is an interesting

limiting case where q → 0. We get, then, with β = α2,

ezX1 = (1− αz)−t exp

(

R
z

1− αz

)

1

and solving for z = U(v) =
v

1 + αv
yields the generating

function for Laguerre polynomials in an appropriate

normalization.

• The Poisson and Gaussian are limiting cases as well.



15 Oscillator algebra

• For the oscillator algebra we have the coordinate map

A1 =
α1

α4
(eα4−1), A2 = α2+

α1α3

α2
4

(eα4−1−α4),

A3 =
α3

α4
(1− e−α4), A4 = α4.

• The double dual is

ξ̂1 = R1, ξ̂2 = R2, ξ̂3 = R3 +R2V1,

ξ̂4 = R4 +R1V1 −R3V3

• We take α4 → αz, α1 → z, α3 → βz,

with R4 dropping out and get, setting R2 = t,

ezX+zY 1 =

exp(R1(e
αz − 1)/α) ·

exp(βt(eαz − 1− αz)/α2) exp(R3β(1− e−αz)/α) 1



• where

X = R1 + αR1V1 + βtV1

and

Y = βR3 − αR3V3

• The Y term gives an independent aff(2).

• The X term gives, with R→ R1,

evR1 = (1 + αv)x/α+βt/α2

exp(−vβt/α)

which is the generating function for Poisson-Charlier

polynomials for a scaled Poisson process with drift.

• Observe that in each case, the formula forX in terms

ofR and V gives the three-term recurrence relation for the

corresponding orthogonal polynomials.



16 Procedure

1. Cartan decomposition.

2. Find coordinate mapping.

3. Exponentiate the double dual.

4. Arrange into commuting operators of the form

X = R+K + L.

5. Group elements generated by raising operators acting on

the vacuum are generating functions for the basis of the

representation.

6. Expectation values of group elements generated by X

operators interpreted as moment generating functions yield

the spectral measures.


