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1 Vector fields and their duals

♦ Recall the double dual in (x, D) variables.

They are operators of the form

xµWµ(D)

♦ Main Observation are the relations

x · W (D) eA·x = W (A) · ∂A eA·x = x · W (A) eA·x

with ∂A = (∂1, ∂2, . . . , ∂d), ∂i = ∂/∂Ai.

What this does is exchange the operators in the (x, D)

variables with corresponding operators in (A, ∂A) variables,

effectively as an algebraic Fourier transform ,

interchanging derivatives and variables.

Thus each vector field has its dual and vice versa.

♦ dual vector field is “dvf” for short. Write

Yi = xµWµi(D), Ỹi = Wµi(A)∂µ

We will be interested in families of

commuting vector fields .

We will use a “canonical” construction.



2 Canonical coordinates

For an operator f(D), the function f(z) is referred to as its

symbol .

♦ Canonical coordinates Start with a function

V (z) = (V1(z), . . . , VN (z)) holomorphic in a

neighborhood of 0, with V (0) = 0, and the Jacobian matrix

V ′ =

(

∂Vi

∂zj

)

nonsingular at 0.

U(v) denotes the functional inverse of V , i.e.,

zj = Uj(V (z)).

The components Vi are canonical coordinates or

canonical functions.

♦ Canonical variables are associated dvf’s

Yj = xλWλj(D)

where W (z) = V ′(z)−1 is the matrix inverse to V ′(z).



3 Raising operators

♦ Commutation relations [Vi(D), Yj ] = δijI .

♦ Proof: We have

[Vi(D), xλ]Wλj = (V ′)iλWλj = δijI

♦ That the Y ’s commute follows ultimately from

equality of the mixed partials of V .

From now on,

W will refer to the inverse Jacobian of a given function V .

 If V is a linear mapping, Vi(z) = Siλzλ, where S is

an invertible constant matrix, with inverse T , we have

V ′ = S. Thus

Vi(D) = SiλDλ, Yi = xµTµi

The inverse function is Ui(v) = Tiλvλ.

� For the Poisson case, with V (z) = ez − 1, we have

W (z) = e−z and U(v) = log(1 + v).
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4 Flow of a DVF

♦ Given the dvf Y = vλYλ = vλxµWµλ(D),

we wish to calculate
∂u

∂t
= Y u, u(0) = f(x).

From the Main Observation we have

etY eA·x = etỸ eA·x = eA(t)·x

For the vector field Ỹ we have: Ȧi = vλWiλ(A)

Multiplying both sides by V ′(A) yields ȦµV ′
kµ = vk .

Now the left-hand side is an exact derivative. I.e.,

d

dt
Vk(A(t)) = vk

Integrating, with initial conditions A(0) = A, we get

V (A(t)) = V (A) + tv

Solving, we have

A(t) = U(tv + V (A))



5 Main Formula

♦ Main Formula

etY eA·x = etỸ eA·x = ex·U(tv+V (A))

A useful corollary is the action of the dvf Y on the vacuum

function equal to 1. We get this by setting A = 0 :

etY 1 = ex·U(tv)

For one variable we have

♦ Main Formula for d = 1

For a canonical function V (z),

with W (z) = 1/V ′(z), U(V (z)) = z.

Let Y = xW (D) be the associated canonical variable.

Then we have

evY eAx = exU(v+V (A))

And, in particular,

evY 1 = exU(v)
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6 Recurrence formula

♦ Canonical polynomials are the basis for our vector

space.

yn(x) = Y n1

Note that the vacuum is the constant function equal to 1.

The raising operator is Y , lowering operator V = V (D)

Y yn(x) = yn+1(x), V (D)yn(x) = nyn−1(x)

providing a representation of the HW algebra.

The generating function for the canonical polynomials is

ev·Y 1 = ex·U(v) =
∑

n≥0

vn

n!
yn(x)



� For V (z) = ez − 1,

Y = xe−D

The shift operator e−Df(x) = f(x − 1) so

yn(x) = Y n1 = xe−Dyn−1(x)

= x(x − 1) · · · (x − n + 1) = x(n)

the nth factorial power.

With U(v) = log(1 + v), the expansion is

(1 + v)x =
∑

n≥0

vn

n!
x(n)

the standard binomial theorem.



7 Random walk formula

♦ Moment generating function W (z) =
∑

n≥0

zn

n!
µn

♦ Define generalized moments

〈〈Xn〉〉 = µn

♦ Probabilistic case

〈Xn〉 = µn

♦ For an analytic function f , expand

f(x + X) =
∞
∑

n=0

Xn

n!
f (n)(x)

where here X denotes a virtual or actual random variable.

W (D) acts as a formal convolution operator

W (D) f(x) =
∞
∑

n=0

µn

n!
f (n)(x) = 〈〈f(x + X)〉〉

We extend the generalized averaging to several variables by

taking them to be effectively independent:

〈〈Xn1

1 Xn2

2 . . .Xnm

m 〉〉 = µn1
µn2

· · ·µnm



♦ Random walk formula The canonical polynomials

may be expressed in the form of ‘generalized factorials.’

yn(x)

= 〈〈x(x+X1)(x+X1+X2) · · · (x+X1+X2+· · ·+Xn−1)〉〉

♦ Random walk Sn = X1 + X2 + · · · + Xn, where

the Xi are independent, identically distributed random

variables with moment generating function equal to W .

♦ With S0 = x, the corresponding expectation value is

denoted by 〈·〉x.

Then

yn(x) = 〈S0S1S2 · · ·Sn−1〉x

Note that this is the product of consecutive variables of the

random walk.



♦ In the probabilistic case write

W (D) =

∫

euD p(du)

Then

(xW (D))n = x

∫

eu1D p(du1) · · ·x
∫

eunD p(dun)

With euDf(x) = f(x + u)euD , we get

(xW (D))n

=

∫

x(x + u1)(x + u1 + u2) · · · (x + u1 + · · · + un−1)

· exp
(

(
n

∑

j=1

uj)D
)

p(du1) · · · p(dun)

♦ This is a formula for the operator Y n

Y n = 〈S0S1S2 · · ·Sn−1e
SnD〉x

Thus the expansion

exU(v) = 1 + x
∞
∑

n=0

vn

n!
〈
n−1
∏

j=1

(x + Sj)〉0



8 Examples

♩ Exponential random walk and Bessel polynomials

Exponential distribution with mean q has W (z) = (1 − qz)−1 or

V = z − qz2/2 , U =
1 −

√

1 − 2qv

q

♦ Let T1, T2,. . . ,Tn,. . . be independent exponentials with

mean q. Then

〈T1(T1+T2) · · · (T1+T2+· · ·+Tn)〉 = n!

(

2n

n

)

(q

2

)n

♦ Consider V = z − z2/2, U = 1 −
√

1 − 2v.

From the classical theory of random walks we have

(1 −
√

1 − 2v)n

√
1 − 2v

=
∑

p≥0

vn+p

2p

(

n + 2p

p

)

Multiplying by xn/n! and summing gives the generating

function for Bessel polynomials θn(x):

1
√

1 − 2v
ex(1−

√
1−2v)



Differentiating ex(1−
√

1−2v) with respect to v and

integrating back we find

ex(1−
√

1−2v) = 1+
∑

n≥1

xn

n!

∑

p≥0

n

n + p

vn+p

2p

(

n + 2p − 1

p

)

Thus, we have

yn(x) =
∑

p

(

n + 2p − 1

p

)

2p( 1
2 )p xn−p

� Cayley example

With V (z) = z e−z , we get W (z) = ez(1 − z)−1, so

that the corresponding probability distribution is an

exponential with mean 1 shifted by 1.

Checking that

yn(x) = x(x + n)n−1

we find

nn−1 = 〈(1+T1)(2+T1+T2) · · · (n−1+T1+T2+· · ·+Tn−1)〉



9 Inversion of analytic functions

♦ Expanding in powers of x we have

exU(v) =
∑

m≥0

xm

m!
(U(v))m

Thus

the coefficient of xm/m! in yn(x) gives

the coefficient of vn/n! in the expansion of U(v)m

♦ Applying the operator g(D) and evaluating at x = 0

g(U(v)) =
∑

n≥0

vn

n!
g(D)yn(0)

♦ Expansion of U(v) is the coefficient of x

U(v) =
∑

n≥0

vn

n!
y′

n(0)

♦ In the random walk formulation

U(v) =
∞
∑

n=1

vn

n!
〈
n−1
∏

j=1

Sj〉0



10 Examples

� Inverse distribution

Given an analytic moment generating function W (z), we

can form

V (z) =

∫ z

0

dζ

W (ζ)

And the inverse of V is given by the above formula. In

particular, if V ′(x) is a density function, we have the

expansion for the inverse distribution function.

� Inverse Gaussian distribution and Gaussian

random walk

With W (z) = ez2/2, we get V as the distribution function

of a standard Gaussian, modulo a factor of
√

2π. Thus, we

have the expansion of the inverse Gaussian distribution in

terms of

(i) the values y′
n(0)

or

(ii) in terms of the Gaussian random walk.



11 Dual approach using vector fields

♦ From our Main Observation we have

evY eAx = evỸ eAx = exU(v+V (A))

=
∑

m≥0

(v + V (A))m

m!
ym(x)

♦ Iterating

application of Y ↔ d

dv
↔ application of Ỹ

n times we get

(Ỹ )neAx =
∑

m≥0

V (A)m

m!
ym+n(x)

the action of Ỹ n on the exponential.

♦ Recover yn(x) by setting A = 0

yn(x) = (W (A)∂A)neAx

∣

∣

∣

∣

A=0



♦ The flow of the vector field Ỹ on g(A) is

evỸ g(A) = g
(

U(v + V (A))
)

♦ Letting A = 0

evỸ g(0) = g(U(v)))

Or

g(U(v)) =
∑

n≥0

vn

n!
Ỹ ng(0)

(approach suggested by D. Dominici)

♦ For g(D) = D we have

(Ỹ )nA

∣

∣

∣

∣

A=0

= (Ỹ )n−1W (0)

which gives the coefficient of vn/n! in the expansion of

U(v).



12 Example

� For V (z) = 1 − e−z , Ỹ = eA∂A.

So U(v) = − log(1 − v) and

U(v)m =
∑

n≥0

vn

n!
(eA∂A)nAm

∣

∣

∣

∣

A=0

On the other hand,

yn(x) = Y n1 =

(xeD)n1 = x(x+1) · · · (x+n−1) = (x)n =
∑

k

Snkxk

Snk are absolute values of Stirling numbers of the first kind. And

Dmyn(0) = m! Snm

So

(− log(1 − v))m =
∑

n≥0

vn

n!
(eA∂A)nAm

∣

∣

∣

∣

A=0

=
∑

n≥0

vn

n!
m! Snm

another variation on the binomial theorem as seen by

expanding (1 − v)−x.



13 Concluding remarks

Our approach in this part applies equally well in d variables,

with n as multi-index and Y n = Y n1

1 · · ·Y nd

d ,

as it is based on the Main Observation which holds in all

dimensions.

The essential feature is that Y = vλYλ, where Yi generate

an abelian algebra.


