Lie algebras Representations and Analytic Semigroups through Dual Vector Fields

Philip Feinsilver

Southern Illinois University Carbondale, Illinois USA 62901

CIMPA-UNESCO-VENEZUELA School Mérida, Venezuela Jan-Feb 2006

Part III. Dual Vector Fields

DVFs

Flow of a dual vector field

Canonical polynomials

 $\triangleright \mathsf{DVFs}$

Flow of a dual vector field

Canonical polynomials

1 Vector fields and their duals

 \diamondsuit **Recall the double dual** in (x, D) variables. They are operators of the form

$$x_{\mu}W_{\mu}(D)$$

Main Observation are the relations

$$x \cdot W(D) e^{A \cdot x} = W(A) \cdot \partial_A e^{A \cdot x} = x \cdot W(A) e^{A \cdot x}$$

with $\partial_A = (\partial_1, \partial_2, \dots, \partial_d)$, $\partial_i = \partial/\partial A_i$.

What this does is exchange the operators in the (x, D) variables with corresponding operators in (A, ∂_A) variables, effectively as an **algebraic Fourier transform**, interchanging derivatives and variables.

Thus each vector field has its dual and vice versa.

♦ dual vector field is "dvf" for short. Write

$$Y_i = x_\mu W_{\mu i}(D), \quad \tilde{Y}_i = W_{\mu i}(A)\partial_\mu$$

We will be interested in families of

commuting vector fields.

We will use a "canonical" construction.

2 Canonical coordinates

For an operator f(D), the function f(z) is referred to as its symbol.

♦ Canonical coordinates Start with a function

$$V(z) = (V_1(z), ..., V_N(z))$$
 holomorphic in a
neighborhood of 0, with $V(0) = 0$, and the Jacobian matrix
 $V' = \left(\frac{\partial V_i}{\partial z_j}\right)$ nonsingular at 0.

 $U(\boldsymbol{v})$ denotes the functional inverse of V, i.e., $z_j = U_j(V(\boldsymbol{z})).$

The components V_i are **canonical coordinates** or canonical functions.

Canonical variables are associated dvf's

$$Y_j = x_\lambda W_{\lambda j}(D)$$

where $W(z) = V'(z)^{-1}$ is the matrix inverse to V'(z).

3 Raising operators

 \diamond Commutation relations $[V_i(D), Y_j] = \delta_{ij}I.$

♦ Proof: We have

$$[V_i(D), x_{\lambda}]W_{\lambda j} = (V')_{i\lambda}W_{\lambda j} = \delta_{ij}I$$

 \diamondsuit That the *Y*'s commute follows ultimately from equality of the mixed partials of *V*.

From now on,

W will refer to the inverse Jacobian of a given function V.

If V is a linear mapping, $V_i(z) = S_{i\lambda} z_{\lambda}$, where S is an invertible constant matrix, with inverse T, we have V' = S. Thus

$$V_i(D) = S_{i\lambda} D_\lambda, \qquad Y_i = x_\mu T_{\mu i}$$

The inverse function is $U_i(v) = T_{i\lambda}v_{\lambda}$.

For the Poisson case, with $V(z) = e^z - 1$, we have $W(z) = e^{-z}$ and $U(v) = \log(1 + v)$.

DVFs

▷ Flow of a dual vector field

Canonical polynomials

4 Flow of a DVF

 $\diamondsuit \ \text{Given the dvf} \quad Y = v_{\lambda}Y_{\lambda} = v_{\lambda}x_{\mu}W_{\mu\lambda}(D),$ we wish to calculate $\frac{\partial u}{\partial t} = Yu, \quad u(0) = f(x).$ From the Main Observation we have

$$e^{tY}e^{A\cdot x} = e^{t\tilde{Y}}e^{A\cdot x} = e^{A(t)\cdot x}$$

For the vector field \tilde{Y} we have: $\dot{A}_i = v_\lambda W_{i\lambda}(A)$ Multiplying both sides by V'(A) yields $\dot{A}_\mu V'_{k\mu} = v_k$. Now the left-hand side is an exact derivative. I.e.,

$$\frac{d}{dt}V_k(A(t)) = v_k$$

Integrating, with initial conditions A(0) = A, we get

$$V(A(t)) = V(A) + tv$$

Solving, we have

$$A(t) = U(tv + V(A))$$

5 Main Formula

♦ Main Formula

$$e^{tY}e^{A\cdot x} = e^{t\tilde{Y}}e^{A\cdot x} = e^{x\cdot U(tv+V(A))}$$

A useful corollary is the action of the dvf Y on the vacuum function equal to 1. We get this by setting A = 0:

$$e^{tY}1 = e^{x \cdot U(tv)}$$

For one variable we have

 \diamondsuit Main Formula for d=1

For a canonical function V(z), with W(z) = 1/V'(z), U(V(z)) = z. Let Y = xW(D) be the associated canonical variable. Then we have

$$e^{vY}e^{Ax} = e^{xU(v+V(A))}$$

And, in particular,

$$e^{vY}1 = e^{xU(v)}$$

DVFs

Flow of a dual vector field

Canonical polynomials

6 Recurrence formula

♦ Canonical polynomials are the basis for our vector space.

$$y_n(x) = Y^n 1$$

Note that the vacuum is the constant function equal to 1. The raising operator is Y, lowering operator V = V(D)

$$Yy_n(x) = y_{n+1}(x), V(D)y_n(x) = ny_{n-1}(x)$$

providing a representation of the HW algebra.

The generating function for the canonical polynomials is

$$e^{v \cdot Y} 1 = e^{x \cdot U(v)} = \sum_{n \ge 0} \frac{v^n}{n!} y_n(x)$$

For
$$V(z) = e^z - 1$$
,

$$Y = xe^{-D}$$

The shift operator $e^{-D}f(\boldsymbol{x})=f(\boldsymbol{x}-1)$ so

$$y_n(x) = Y^n 1 = x e^{-D} y_{n-1}(x)$$

= $x(x-1) \cdots (x-n+1) = x^{(n)}$

the n^{th} factorial power.

With $U(v) = \log(1+v),$ the expansion is

$$(1+v)^x = \sum_{n\ge 0} \frac{v^n}{n!} x^{(n)}$$

the standard binomial theorem.

7 Random walk formula

 \diamondsuit Moment generating function

$$W(z) = \sum_{n \ge 0} \frac{z^n}{n!} \,\mu_n$$

♦ Define generalized moments

$$\langle\!\langle X^n \rangle\!\rangle = \mu_n$$

♦ Probabilistic case

$$\langle X^n \rangle = \mu_n$$

 \diamondsuit For an analytic function f, expand

$$f(x+X) = \sum_{n=0}^{\infty} \frac{X^n}{n!} f^{(n)}(x)$$

where here X denotes a virtual or actual random variable. $W(D) \ {\rm acts} \ {\rm as} \ {\rm a} \ {\rm formal \ convolution \ operator}$

$$W(D) f(x) = \sum_{n=0}^{\infty} \frac{\mu_n}{n!} f^{(n)}(x) = \langle\!\langle f(x+X) \rangle\!\rangle$$

We extend the generalized averaging to several variables by taking them to be effectively independent:

$$\langle\!\langle X_1^{n_1} X_2^{n_2} \dots X_m^{n_m} \rangle\!\rangle = \mu_{n_1} \mu_{n_2} \cdots \mu_{n_m}$$

Random walk formula The canonical polynomials may be expressed in the form of 'generalized factorials.'

$$= \langle\!\langle x(x+X_1)(x+X_1+X_2)\cdots(x+X_1+X_2+\cdots+X_{n-1})\rangle\!\rangle$$

 \diamondsuit Random walk $S_n = X_1 + X_2 + \cdots + X_n$, where the X_i are independent, identically distributed random variables with moment generating function equal to W.

 \diamond With $S_0 = x$, the corresponding expectation value is denoted by $\langle \cdot \rangle_x$.

Then

 $y_n(x)$

$$y_n(x) = \langle S_0 S_1 S_2 \cdots S_{n-1} \rangle_x$$

Note that this is the product of consecutive variables of the random walk.

 \diamond In the probabilistic case write

$$W(D) = \int e^{uD} p(du)$$

Then

$$(xW(D))^n = x \int e^{u_1 D} p(du_1) \cdots x \int e^{u_n D} p(du_n)$$

With $e^{uD}f(x)=f(x+u)e^{uD},$ we get $(xW(D))^n$

$$= \int x(x+u_1)(x+u_1+u_2)\cdots(x+u_1+\cdots+u_{n-1})$$

$$\cdot \exp\left(\left(\sum_{j=1}^n u_j\right)D\right)p(du_1)\cdots p(du_n)$$

 \diamondsuit This is a formula for the operator Y^n

$$Y^n = \langle S_0 S_1 S_2 \cdots S_{n-1} e^{S_n D} \rangle_x$$

Thus the expansion

$$e^{xU(v)} = 1 + x \sum_{n=0}^{\infty} \frac{v^n}{n!} \langle \prod_{j=1}^{n-1} (x + S_j) \rangle_0$$

8 **Examples**

Exponential random walk and Bessel polynomials Exponential distribution with mean q has $W(z) = (1 - qz)^{-1}$ or

$$V = z - qz^2/2$$
, $U = \frac{1 - \sqrt{1 - 2qv}}{q}$

 \diamond Let $T_1, T_2, \ldots, T_n, \ldots$ be independent exponentials with mean q. Then

$$\langle T_1(T_1+T_2)\cdots(T_1+T_2+\cdots+T_n)\rangle = n! \binom{2n}{n} \left(\frac{q}{2}\right)^n$$

♦ Consider $V = z - z^2/2, U = 1 - \sqrt{1 - 2v}.$ F

$$\frac{(1 - \sqrt{1 - 2v})^n}{\sqrt{1 - 2v}} = \sum_{p \ge 0} \frac{v^{n+p}}{2^p} \binom{n+2p}{p}$$

Multiplying by $x^n/n!$ and summing gives the generating function for Bessel polynomials $\theta_n(x)$:

$$\frac{1}{\sqrt{1-2v}}e^{x(1-\sqrt{1-2v})}$$

Differentiating $e^{x(1-\sqrt{1-2v})}$ with respect to v and integrating back we find

$$e^{x(1-\sqrt{1-2v})} = 1 + \sum_{n \ge 1} \frac{x^n}{n!} \sum_{p \ge 0} \frac{n}{n+p} \frac{v^{n+p}}{2^p} \binom{n+2p-1}{p}$$

Thus, we have

$$y_n(x) = \sum_p \binom{n+2p-1}{p} 2^p (\frac{1}{2})_p x^{n-p}$$

Cayley example

With $V(z) = z e^{-z}$, we get $W(z) = e^{z}(1-z)^{-1}$, so that the corresponding probability distribution is an exponential with mean 1 shifted by 1.

Checking that

$$y_n(x) = x(x+n)^{n-1}$$

we find

$$n^{n-1} = \langle (1+T_1)(2+T_1+T_2)\cdots(n-1+T_1+T_2+\cdots+T_{n-1}) \rangle$$

9 Inversion of analytic functions

 \diamondsuit Expanding in powers of x we have

$$e^{xU(v)} = \sum_{m \ge 0} \frac{x^m}{m!} (U(v))^m$$

Thus

the coefficient of $x^m/m!$ in $y_n(x)$ gives the coefficient of $v^n/n!$ in the expansion of $U(v)^m$ \diamondsuit Applying the operator g(D) and evaluating at x = 0

$$g(U(v)) = \sum_{n \ge 0} \frac{v^n}{n!} g(D) y_n(0)$$

 \diamondsuit Expansion of U(v) % U(v) is the coefficient of x

$$U(v) = \sum_{n \ge 0} \frac{v^n}{n!} y'_n(0)$$

 \diamondsuit In the random walk formulation

$$U(v) = \sum_{n=1}^{\infty} \frac{v^n}{n!} \langle \prod_{j=1}^{n-1} S_j \rangle_0$$

10 Examples

7

Inverse distribution

Given an analytic moment generating function W(z), we can form

$$V(z) = \int_0^z \frac{d\zeta}{W(\zeta)}$$

And the inverse of V is given by the above formula. In particular, if V'(x) is a density function, we have the expansion for the inverse distribution function.

Inverse Gaussian distribution and Gaussian random walk

With $W(z) = e^{z^2/2}$, we get V as the distribution function of a standard Gaussian, modulo a factor of $\sqrt{2\pi}$. Thus, we have the expansion of the inverse Gaussian distribution in terms of

(i) the values $y_n^\prime(0)$

or

(ii) in terms of the Gaussian random walk.

11 Dual approach using vector fields

 \diamondsuit From our Main Observation we have

$$e^{vY}e^{Ax} = e^{v\tilde{Y}}e^{Ax} = e^{xU(v+V(A))}$$

$$= \sum_{m\geq 0} \frac{(v+V(A))^m}{m!} y_m(x)$$

 \diamond Iterating

application of
$$Y \iff \frac{d}{dv} \iff$$
 application of \tilde{Y}

 $n \ {\rm times} \ {\rm we} \ {\rm get}$

$$(\tilde{Y})^n e^{Ax} = \sum_{m \ge 0} \frac{V(A)^m}{m!} y_{m+n}(x)$$

the action of \tilde{Y}^n on the exponential.

 $\diamondsuit \text{ Recover } y_n(x) \text{ by setting } A = 0$ $y_n(x) = (W(A)\partial_A)^n e^{Ax} \Big|_{A=0}$

 \diamondsuit The flow of the vector field $ilde{Y}$ on g(A) is

$$e^{v\tilde{Y}}g(A) = g(U(v+V(A)))$$

 \diamondsuit Letting A = 0

$$e^{v\tilde{Y}}g(0) = g(U(v)))$$

Or

$$g(U(v)) = \sum_{n \ge 0} \frac{v^n}{n!} \, \tilde{Y}^n g(0)$$

(approach suggested by D. Dominici)

 $\diamondsuit \ \operatorname{For} g(D) = D \quad \text{we have} \quad$

$$(\tilde{Y})^n A \bigg|_{A=0} = (\tilde{Y})^{n-1} W(0)$$

which gives the coefficient of $v^n/n!$ in the expansion of U(v).

12 Example

For
$$V(z) = 1 - e^{-z}$$
, $\tilde{Y} = e^A \partial_A$.
So $U(v) = -\log(1 - v)$ and
$$U(v)^m = \sum_{n \ge 0} \frac{v^n}{n!} (e^A \partial_A)^n A^m \Big|_{A=0}$$

On the other hand,

$$y_n(x) = Y^n 1 =$$

 $(xe^D)^n 1 = x(x+1)\cdots(x+n-1) = (x)_n = \sum_k S_{nk} x^k$

 S_{nk} are absolute values of Stirling numbers of the first kind. And

$$D^m y_n(0) = m! S_{nm}$$

So

$$(-\log(1-v))^m = \sum_{n\geq 0} \frac{v^n}{n!} (e^A \partial_A)^n A^m \Big|_{A=0}$$
$$= \sum_{n\geq 0} \frac{v^n}{n!} m! S_{nm}$$

another variation on the binomial theorem as seen by expanding $(1-v)^{-x}$.

13 Concluding remarks

Our approach in this part applies equally well in d variables,

with n as multi-index and $Y^n = Y_1^{n_1} \cdots Y_d^{n_d}$,

as it is based on the Main Observation which holds in all dimensions.

The essential feature is that $Y = v_{\lambda}Y_{\lambda}$, where Y_i generate an abelian algebra.