Lie algebras
 Representations and
 Analytic Semigroups through
 Dual Vector Fields

Philip Feinsilver

Southern IIlinois University

Carbondale, Illinois USA 62901

CIMPA-UNESCO-VENEZUELA School
Mérida, Venezuela Jan-Feb 2006

Part III. Dual Vector Fields

DVFs

Flow of a dual vector field

Canonical polynomials

\triangleright DVFs

Flow of a dual vector field

Canonical polynomials

1 Vector fields and their duals

\diamond Recall the double dual in (x, D) variables.
They are operators of the form

$$
x_{\mu} W_{\mu}(D)
$$

\diamond Main Observation are the relations

$$
x \cdot W(D) e^{A \cdot x}=W(A) \cdot \partial_{A} e^{A \cdot x}=x \cdot W(A) e^{A \cdot x}
$$

with $\partial_{A}=\left(\partial_{1}, \partial_{2}, \ldots, \partial_{d}\right), \partial_{i}=\partial / \partial A_{i}$.
What this does is exchange the operators in the (x, D)
variables with corresponding operators in $\left(A, \partial_{A}\right)$ variables, effectively as an algebraic Fourier transform, interchanging derivatives and variables.

Thus each vector field has its dual and vice versa.
\diamond dual vector field is "dvf" for short. Write

$$
Y_{i}=x_{\mu} W_{\mu i}(D), \quad \tilde{Y}_{i}=W_{\mu i}(A) \partial_{\mu}
$$

We will be interested in families of commuting vector fields.

We will use a "canonical" construction.

2 Canonical coordinates

For an operator $f(D)$, the function $f(z)$ is referred to as its symbol.
\diamond Canonical coordinates Start with a function $V(z)=\left(V_{1}(z), \ldots, V_{N}(z)\right)$ holomorphic in a neighborhood of 0 , with $V(0)=0$, and the Jacobian matrix $V^{\prime}=\left(\frac{\partial V_{i}}{\partial z_{j}}\right)$ nonsingular at 0 .
$U(v)$ denotes the functional inverse of V, i.e., $z_{j}=U_{j}(V(z))$.

The components V_{i} are canonical coordinates or canonical functions.
\diamond Canonical variables are associated dvf's

$$
Y_{j}=x_{\lambda} W_{\lambda j}(D)
$$

where $W(z)=V^{\prime}(z)^{-1}$ is the matrix inverse to $V^{\prime}(z)$.

3 Raising operators

\diamond Commutation relations
 $$
\left[V_{i}(D), Y_{j}\right]=\delta_{i j} I
$$

\diamond Proof: We have

$$
\left[V_{i}(D), x_{\lambda}\right] W_{\lambda j}=\left(V^{\prime}\right)_{i \lambda} W_{\lambda j}=\delta_{i j} I
$$

\diamond That the Y 's commute follows ultimately from equality of the mixed partials of V.

From now on,
W will refer to the inverse Jacobian of a given function V.
d If V is a linear mapping, $V_{i}(z)=S_{i \lambda} z_{\lambda}$, where S is an invertible constant matrix, with inverse T, we have $V^{\prime}=S$. Thus

$$
V_{i}(D)=S_{i \lambda} D_{\lambda}, \quad Y_{i}=x_{\mu} T_{\mu i}
$$

The inverse function is $U_{i}(v)=T_{i \lambda} v_{\lambda}$.
\perp For the Poisson case, with $V(z)=e^{z}-1$, we have $W(z)=e^{-z}$ and $U(v)=\log (1+v)$.

DVFs

\triangleright Flow of a dual vector field

Canonical polynomials

4 Flow of a DVF

\diamond Given the dvf $\quad Y=v_{\lambda} Y_{\lambda}=v_{\lambda} x_{\mu} W_{\mu \lambda}(D)$, we wish to calculate $\frac{\partial u}{\partial t}=Y u, \quad u(0)=f(x)$.
From the Main Observation we have

$$
e^{t Y} e^{A \cdot x}=e^{t \tilde{Y}} e^{A \cdot x}=e^{A(t) \cdot x}
$$

For the vector field \tilde{Y} we have: $\quad \dot{A}_{i}=v_{\lambda} W_{i \lambda}(A)$
Multiplying both sides by $V^{\prime}(A)$ yields $\dot{A}_{\mu} V_{k \mu}^{\prime}=v_{k}$.
Now the left-hand side is an exact derivative. I.e.,

$$
\frac{d}{d t} V_{k}(A(t))=v_{k}
$$

Integrating, with initial conditions $A(0)=A$, we get

$$
V(A(t))=V(A)+t v
$$

Solving, we have

$$
A(t)=U(t v+V(A))
$$

5 Main Formula

\diamond Main Formula

$$
e^{t Y} e^{A \cdot x}=e^{t \tilde{Y}} e^{A \cdot x}=e^{x \cdot U(t v+V(A))}
$$

A useful corollary is the action of the dvf Y on the vacuum function equal to 1 . We get this by setting $A=0$:

$$
e^{t Y} 1=e^{x \cdot U(t v)}
$$

For one variable we have
\diamond Main Formula for $d=1$
For a canonical function $V(z)$,
with $W(z)=1 / V^{\prime}(z), U(V(z))=z$.
Let $Y=x W(D)$ be the associated canonical variable.
Then we have

$$
e^{v Y} e^{A x}=e^{x U(v+V(A))}
$$

And, in particular,

$$
e^{v Y} 1=e^{x U(v)}
$$

DVFs

Flow of a dual vector field

\triangleright Canonical polynomials

6 Recurrence formula

\diamond Canonical polynomials are the basis for our vector space.

$$
y_{n}(x)=Y^{n} 1
$$

Note that the vacuum is the constant function equal to 1 .
The raising operator is Y, lowering operator $V=V(D)$

$$
Y y_{n}(x)=y_{n+1}(x), V(D) y_{n}(x)=n y_{n-1}(x)
$$

providing a representation of the HW algebra.

The generating function for the canonical polynomials is

$$
e^{v \cdot Y} 1=e^{x \cdot U(v)}=\sum_{n \geq 0} \frac{v^{n}}{n!} y_{n}(x)
$$

\downarrow For $V(z)=e^{z}-1$,

$$
Y=x e^{-D}
$$

The shift operator $e^{-D} f(x)=f(x-1)$ so

$$
\begin{aligned}
y_{n}(x) & =Y^{n} 1=x e^{-D} y_{n-1}(x) \\
& =x(x-1) \cdots(x-n+1)=x^{(n)}
\end{aligned}
$$

the $n^{\text {th }}$ factorial power.

With $U(v)=\log (1+v)$, the expansion is

$$
(1+v)^{x}=\sum_{n \geq 0} \frac{v^{n}}{n!} x^{(n)}
$$

the standard binomial theorem.

7 Random walk formula

\diamond Moment generating function $\quad W(z)=\sum_{n \geq 0} \frac{z^{n}}{n!} \mu_{n}$
\diamond Define generalized moments

$$
\left\langle\left\langle X^{n}\right\rangle\right\rangle=\mu_{n}
$$

\diamond Probabilistic case

$$
\left\langle X^{n}\right\rangle=\mu_{n}
$$

\diamond For an analytic function f, expand

$$
f(x+X)=\sum_{n=0}^{\infty} \frac{X^{n}}{n!} f^{(n)}(x)
$$

where here X denotes a virtual or actual random variable. $W(D)$ acts as a formal convolution operator

$$
W(D) f(x)=\sum_{n=0}^{\infty} \frac{\mu_{n}}{n!} f^{(n)}(x)=\langle\langle f(x+X)\rangle\rangle
$$

We extend the generalized averaging to several variables by taking them to be effectively independent:

$$
\left\langle\left\langle X_{1}^{n_{1}} X_{2}^{n_{2}} \ldots X_{m}^{n_{m}}\right\rangle\right\rangle=\mu_{n_{1}} \mu_{n_{2}} \cdots \mu_{n_{m}}
$$

\diamond Random walk formula The canonical polynomials may be expressed in the form of 'generalized factorials.'
$y_{n}(x)$

$$
=\left\langle\left\langle x\left(x+X_{1}\right)\left(x+X_{1}+X_{2}\right) \cdots\left(x+X_{1}+X_{2}+\cdots+X_{n-1}\right)\right\rangle\right\rangle
$$

\diamond Random walk $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, where the X_{i} are independent, identically distributed random variables with moment generating function equal to W.
\diamond With $S_{0}=x$, the corresponding expectation value is denoted by $\langle\cdot\rangle_{x}$.

Then

$$
y_{n}(x)=\left\langle S_{0} S_{1} S_{2} \cdots S_{n-1}\right\rangle_{x}
$$

Note that this is the product of consecutive variables of the random walk.
\diamond In the probabilistic case write

$$
W(D)=\int e^{u D} p(d u)
$$

Then
$(x W(D))^{n}=x \int e^{u_{1} D} p\left(d u_{1}\right) \cdots x \int e^{u_{n} D} p\left(d u_{n}\right)$
With $e^{u D} f(x)=f(x+u) e^{u D}$, we get
$(x W(D))^{n}$

$$
\begin{aligned}
& =\int x\left(x+u_{1}\right)\left(x+u_{1}+u_{2}\right) \cdots\left(x+u_{1}+\cdots+u_{n-1}\right) \\
& \cdot \quad \exp \left(\left(\sum_{j=1}^{n} u_{j}\right) D\right) p\left(d u_{1}\right) \cdots p\left(d u_{n}\right)
\end{aligned}
$$

\diamond This is a formula for the operator Y^{n}

$$
Y^{n}=\left\langle S_{0} S_{1} S_{2} \cdots S_{n-1} e^{S_{n} D}\right\rangle_{x}
$$

Thus the expansion

$$
e^{x U(v)}=1+x \sum_{n=0}^{\infty} \frac{v^{n}}{n!}\left\langle\prod_{j=1}^{n-1}\left(x+S_{j}\right)\right\rangle_{0}
$$

8 Examples

.. Exponential random walk and Bessel polynomials Exponential distribution with mean q has $W(z)=(1-q z)^{-1}$ or

$$
V=z-q z^{2} / 2, \quad U=\frac{1-\sqrt{1-2 q v}}{q}
$$

\diamond Let $T_{1}, T_{2}, \ldots, T_{n}, \ldots$ be independent exponentials with mean q. Then
$\left\langle T_{1}\left(T_{1}+T_{2}\right) \cdots\left(T_{1}+T_{2}+\cdots+T_{n}\right)\right\rangle=n!\binom{2 n}{n}\left(\frac{q}{2}\right)^{n}$
\diamond Consider $\quad V=z-z^{2} / 2, U=1-\sqrt{1-2 v}$.
From the classical theory of random walks we have

$$
\frac{(1-\sqrt{1-2 v})^{n}}{\sqrt{1-2 v}}=\sum_{p \geq 0} \frac{v^{n+p}}{2^{p}}\binom{n+2 p}{p}
$$

Multiplying by x^{n} / n ! and summing gives the generating function for Bessel polynomials $\theta_{n}(x)$:

$$
\frac{1}{\sqrt{1-2 v}} e^{x(1-\sqrt{1-2 v})}
$$

Differentiating $e^{x(1-\sqrt{1-2 v})}$ with respect to v and integrating back we find

$$
e^{x(1-\sqrt{1-2 v})}=1+\sum_{n \geq 1} \frac{x^{n}}{n!} \sum_{p \geq 0} \frac{n}{n+p} \frac{v^{n+p}}{2^{p}}\binom{n+2 p-1}{p}
$$

Thus, we have

$$
y_{n}(x)=\sum_{p}\binom{n+2 p-1}{p} 2^{p}\left(\frac{1}{2}\right)_{p} x^{n-p}
$$

๑. Cayley example

With $V(z)=z e^{-z}$, we get $W(z)=e^{z}(1-z)^{-1}$, so
that the corresponding probability distribution is an exponential with mean 1 shifted by 1 .

Checking that

$$
y_{n}(x)=x(x+n)^{n-1}
$$

we find

$$
n^{n-1}=\left\langle\left(1+T_{1}\right)\left(2+T_{1}+T_{2}\right) \cdots\left(n-1+T_{1}+T_{2}+\cdots+T_{n-1}\right)\right\rangle
$$

9 Inversion of analytic functions

\diamond Expanding in powers of $x \quad$ we have

$$
e^{x U(v)}=\sum_{m \geq 0} \frac{x^{m}}{m!}(U(v))^{m}
$$

Thus
the coefficient of $x^{m} / m!$ in $y_{n}(x)$ gives
the coefficient of v^{n} / n ! in the expansion of $U(v)^{m}$
\diamond Applying the operator $g(D)$ and evaluating at $x=0$

$$
g(U(v))=\sum_{n \geq 0} \frac{v^{n}}{n!} g(D) y_{n}(0)
$$

\diamond Expansion of $U(v)$ is the coefficient of x

$$
U(v)=\sum_{n \geq 0} \frac{v^{n}}{n!} y_{n}^{\prime}(0)
$$

\diamond In the random walk formulation

$$
U(v)=\sum_{n=1}^{\infty} \frac{v^{n}}{n!}\left\langle\prod_{j=1}^{n-1} S_{j}\right\rangle_{0}
$$

10 Examples

\downarrow Inverse distribution
Given an analytic moment generating function $W(z)$, we can form

$$
V(z)=\int_{0}^{z} \frac{d \zeta}{W(\zeta)}
$$

And the inverse of V is given by the above formula. In particular, if $V^{\prime}(x)$ is a density function, we have the expansion for the inverse distribution function.
\rightarrow Inverse Gaussian distribution and Gaussian random walk
With $W(z)=e^{z^{2} / 2}$, we get V as the distribution function of a standard Gaussian, modulo a factor of $\sqrt{2 \pi}$. Thus, we have the expansion of the inverse Gaussian distribution in terms of
(i) the values $y_{n}^{\prime}(0)$
or
(ii) in terms of the Gaussian random walk.

11 Dual approach using vector fields

\diamond From our Main Observation we have

$$
e^{v Y} e^{A x}=e^{v \tilde{Y}} e^{A x}=e^{x U(v+V(A))}
$$

$$
=\sum_{m \geq 0} \frac{(v+V(A))^{m}}{m!} y_{m}(x)
$$

\diamond Iterating
application of $Y \quad \leftrightarrow \quad \frac{d}{d v} \quad \leftrightarrow \quad$ application of \tilde{Y}
n times we get

$$
(\tilde{Y})^{n} e^{A x}=\sum_{m \geq 0} \frac{V(A)^{m}}{m!} y_{m+n}(x)
$$

the action of \tilde{Y}^{n} on the exponential.
\diamond Recover $y_{n}(x)$ by setting $A=0$

$$
y_{n}(x)=\left.\left(W(A) \partial_{A}\right)^{n} e^{A x}\right|_{A=0}
$$

\diamond The flow of the vector field $\quad \tilde{Y}$ on $g(A)$ is

$$
e^{v \tilde{Y}} g(A)=g(U(v+V(A)))
$$

\diamond Letting $A=0$

$$
\left.e^{v \tilde{Y}} g(0)=g(U(v))\right)
$$

Or

$$
g(U(v))=\sum_{n \geq 0} \frac{v^{n}}{n!} \tilde{Y}^{n} g(0)
$$

(approach suggested by D. Dominici)
\diamond For $g(D)=D \quad$ we have

$$
\left.(\tilde{Y})^{n} A\right|_{A=0}=(\tilde{Y})^{n-1} W(0)
$$

which gives the coefficient of v^{n} / n ! in the expansion of $U(v)$.

12 Example

\rightarrow For $V(z)=1-e^{-z}, \quad \tilde{Y}=e^{A} \partial_{A}$.

$$
\text { So } U(v)=-\log (1-v) \text { and }
$$

$$
U(v)^{m}=\left.\sum_{n \geq 0} \frac{v^{n}}{n!}\left(e^{A} \partial_{A}\right)^{n} A^{m}\right|_{A=0}
$$

On the other hand,

$$
y_{n}(x)=Y^{n} 1=
$$

$$
\left(x e^{D}\right)^{n} 1=x(x+1) \cdots(x+n-1)=(x)_{n}=\sum_{k} S_{n k} x^{k}
$$

$S_{n k}$ are absolute values of Stirling numbers of the first kind. And

$$
D^{m} y_{n}(0)=m!S_{n m}
$$

So

$$
\begin{aligned}
(-\log (1-v))^{m} & =\left.\sum_{n \geq 0} \frac{v^{n}}{n!}\left(e^{A} \partial_{A}\right)^{n} A^{m}\right|_{A=0} \\
& =\sum_{n \geq 0} \frac{v^{n}}{n!} m!S_{n m}
\end{aligned}
$$

another variation on the binomial theorem as seen by expanding $(1-v)^{-x}$.

13 Concluding remarks

Our approach in this part applies equally well in d variables, with n as multi-index and $Y^{n}=Y_{1}^{n_{1}} \cdots Y_{d}^{n_{d}}$, as it is based on the Main Observation which holds in all dimensions.

The essential feature is that $Y=v_{\lambda} Y_{\lambda}$, where Y_{i} generate an abelian algebra.

