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1 Raising and lowering operators I

➧ vector space H with a basis {ψn}n≥0

➨ scalars: C, R

➧ Dirac notation writes ψn = |n 〉, called “ket”, where

the label n is the eigenvalue of an operator on H

➧ vacuum state ket | 0 〉 is called the vacuum state Ω

➨ Mapped to the zero vector by all lowering operators

➧ raising and lowering operators

R|n 〉 = |n+ 1 〉 V |n 〉 = n|n− 1 〉

Generally we work with d variables setting

Ri |n 〉 = |n+ ei 〉 = |n1, . . . , ni + 1, . . . , nd 〉
Vi |n 〉 = ni|n− ei 〉

V is for velocity



2 Lie algebras

➧ Lie algebra g with product [a, b] satisfies [a, a] = 0

Jacobi identity: [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0

commutator [a, b] = ab− ba will be used throughout

➧ Representation

➨ elements are linear maps on a vector space

➨ Lie product maps to the commutator

➧ adjoint representation: (ad a)(b) = [a, b]

Basis { ξ1, ξ2, . . . , ξd } determines structure constants

(ad ξk)(ξj) = [ξk, ξj ] =
∑

i

cikjξi

giving matrices of the adjoint representation

(ξ̌k)ij = cikj

➧ suitable functions for realizations via differential

operators are polynomials and by extension

locally holomorphic functions

➨ formal power series are included as suitable

functions



3 HW and representations

➧ Heisenberg-Weyl algebra is given by the commutation

rule

[ξ3, ξ1] = ξ2

A matrix representation of the HW algebra is

ξ1 =





0 0 0

0 0 1

0 0 0



 , ξ2 =





0 0 1

0 0 0

0 0 0



 , ξ3 =





0 1 0

0 0 0

0 0 0





The adjoint representation is

ξ̌1 =





0 0 0

0 0 −1

0 0 0



 , ξ̌2 =





0 0 0

0 0 0

0 0 0



 , ξ̌3 =





0 0 0

1 0 0

0 0 0





➧ Boson realization R and V acting on the vectors |n 〉

(VR−RV)|n 〉 = (n+ 1 − n)|n 〉 = |n 〉

satisfy [V ,R] = I , where I is the identity operator.

And I commutes with all operators.

So this is a representation of the HW algebra.



➨ On polynomials in d variables let

Xi = operator of multiplication by xi

Di = differentiation with respect to xi

acting on the basis |n 〉 = xn = xn1

1 · · ·xnd

d

with vacuum state | 0 〉 = 1

➧ Commutation relations prescribing HW(d)

[Dj , Xi] = δij I

➧ Boson operators: any family of operators {Ri, Vj }

[Vj , Ri] = δij I

➧ Jordan map Any Lie algebra may be realized as vector

fields

ξi ↔ Xλc
λ
iµDµ = xλc

λ
iµ

∂

∂xµ

Notation. Our summation convention is:

Greek indices are always summed.



4 Gaussian

➧ Gaussian density pt(dx) =
e−x2/(2t)

√
2πt

dx

➧ Moment polynomials

hn(x) =

∫ ∞

−∞

(x+ y)n pt(dy)

In this case, we have

hn(x) =

∫ ∞

−∞

(x+ y
√
t)np1(dy)

This may be written as an expected value

hn(x) = 〈(x+Xt)
n〉

where Xt is the corresponding Gaussian variable.

Lowering operator: V = D, i.e., Dhn = nhn−1

Raising operator: R = X + tD

➧ Recurrence formula Write X = R − tD = R− tV

x hn = hn+1 − tn hn−1



➨ Hermite polynomials are orthogonal with respect to

the Gaussian distribution

Hn(x) =

∫ ∞

−∞

(x+ iy)n pt(dy)

where i =
√
−1.

➨ For the Hermite polynomials

R = X − tD, V = D

The recurrence is thus

xψn = hn+1 + tn hn−1

which is the three-term recurrence a family of orthogonal

polynomials must satisfy.

➨ L = R∗ = tV , the operator adjoint to R with

respect to the inner product

〈f, g〉 =

∫ ∞

−∞

f(y)g(y) pt(dy)

on polynomials or smooth functions with derivatives in

L2(R) of the corresponding Gaussian measure.



5 Poisson

➧ Poisson distribution pt(x) = e−t t
x

x!
for integer x ≥ 0.

➧ Poisson-Charlier polynomials are orthogonal with

respect to this Poisson distribution. A generating function is

G(v) = G(v;x, t) = (1+v)x e−vt =
∑

n≥0

vn

n!
Pn(x, t)

➨ Difference operator expressed in terms of D is

(eD − 1)f(x) = f(x+ 1) − f(x)

➧ Duality

“Multiplication by v” ↔ lowering operator V Pn = nPn−1

V = eD − 1

“Differentiation wrt v” ↔ raising operatorRPn = Pn+1

The operators V,R are given by transferring

the HW representation

“multiplication by v, differentiation with respect to v”

via generating functionG to the vector space spanned by {Pn }



➨ To find R we must express ∂/∂v in terms of X andD.

Observe
1

1 + V
= e−D

yielding the HW representation

R = Xe−D − tI, V = eD − I

Solving, we find

X = (R + t)(1 + V ) = t+R+RV + tV

Note that RV is the number operator : RV Pn = nPn

And the form of X gives the recurrence formula

xPn = Pn+1 + (n+ t)Pn + ntPn−1

The Lie algebra generated by {R, V,RV } is the

oscillator algebra.



6 Analytic representations of HW

➧ The HW relation [V,R] = I implies that for any

polynomial f(x)

[V, f(R)] = f ′(R)

acting on kets. Dually,

[f(V ), R] = f ′(V )

These extend to suitable functions f .

➧ Canonical operators V (z) is a locally holomorphic

function, V (0) = 0, V ′(0) 6= 0, W (D) = V ′(D)−1.

Y = XW (D), V = V (D)

The vacuum for the representation is the function equal to 1.

Acting on polynomials or exponential functions in x,

[V (D), XW (D)] = V ′(D)W (D) = I . Thus

[V, Y ] = I
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7 Raising and lowering operators II

➧ Question how to express various operators of the

representation of a Lie algebra in terms of R’s and V ’s ?

➧ Adjoint of R with respect to the inner product on the

L2 space of the underlying measure gives the lowering

operator L

➧ Squared norms determine its properties. Let

Lψn = bnψn−1

Then the condition L = R∗ yields

〈ψn, ψn〉 = γn = bnγn−1

With ‖Ω‖2 = 1, b0 = 0, we get

γn = b1b2 · · · bn

� For the Gaussian,R = X − tD, L = tD so the

squared norms are

‖Hn‖2 = tn n!



8 Coherent states

➧ Coherent state ψv = evRΩ

Let 〈ψn, ψm〉 = δmnn! with squared norms γn = n!

In this case L = V : 〈ψn, Rψm〉 = 〈V ψn, ψm〉
➧ Duality goes like this

V ψv = V evRΩ = evRV Ω+[V, evR]Ω = vevRΩ = vψv

Thus, on ψv we have

Rψv =
∂

∂v
ψv, V ψv = v ψv

➧ Leibniz function Multiplying by vm/m! and summing

gives 〈ψn, ψv〉 = vn. Multiplying by wn/n! and summing

gives the inner product of coherent states

〈ψw, ψv〉 = Υwv = ewv

➧ Partial differential equation for Υ

∂Υ

∂w
= 〈Rψw, ψv〉 = vΥ

compactly expresses the relation R∗ = V .



9 Coherent states for HW

➧ coherent state representation of an operatorQ

〈Q〉wv =
〈ψw, Qψv〉
〈ψw, ψv〉

➨ Gaussian case: R = X − tD, L = tD. We find

Υwv = 〈ewRΩ, evRΩ〉 = etwv

➨ Differentiating with respect to v yields the CSR of R,

differentiating with respect to w yields the CSR of L :

〈R〉wv = tw, 〈L〉wv = tv

➨ The Leibniz function satisfies the PDE

∂Υ

∂w
= tvΥ

another way to see that L = tV .



10 sl(2)

➧ sl(2) is the Lie algebra of 2 × 2 matrices of trace zero.

The standard basis is

R =

(

0 1

0 0

)

, ρ =

(

1 0

0 −1

)

, ∆ =

(

0 0

−1 0

)

➨ Commutation relations

[∆, R] = ρ, [ρ,R] = 2R, [∆, ρ] = 2∆

On radial functions, ∆ is one-half times the Laplacian

∆ = 1
2

∑ ∂2

∂x2
j

, R = 1
2

∑

x2
j , ρ =

∑

xj
∂

∂xj
+
d

2

➨ Representation space has basis

ψn = RnΩ, with ∆Ω = 0, ρΩ = cΩ

➨ Commutation rule corresponding to Leibniz’ rule for

differentiating a power function times another function

[∆, Rn] = n(ρ+ n− 1)Rn−1

➨ On the vacuum state ∆ψn = n(c+ n− 1)ψn−1



11 Coherent states for sl(2)

➧ Lowering operator L = ∆ = cV +RV 2

➨ squared norms γn = n!(c)n

➧ Coherent state ψv = evRΩ

➨ 〈ψn, ψv〉 = (c)nv
n and the Leibniz function is

Υwv = (1 − wv)−c

which satisfies
∂Υ

∂w
= cvΥ + v

2
∂Υ

∂v
.

➨ Operators R̂ = R, ∆̂ = cV +RV 2 and

ρ̂ = [∆̂, R̂] = c+ 2RV

Then (c+ 2RV )ψv = (c+ 2v
∂

∂v
)ψv

gives 〈ρ〉wv = c+
2v

Υ

∂Υ

∂v
. The CSR’s are

〈R〉wv =
cw

1 − wv
, 〈ρ〉wv = c

1 + wv

1 − wv
, 〈L〉wv =

cv

1 − wv
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12 Definition

➧ Appell systems {hn} are defined by these properties:

① hn(x) is a polynomial of degree n, n ≥ 0

② Dhn(x) = nhn−1(x)

For N ≥ 1, we have analogously

➨ hn(x) is a polynomial of degree |n|, n ≥ 0

➨ Djhn(x) = nj hn−ej
(x)

➧ Generating function F (z, x) =
∑

n≥0

zn hn(x)/n!

satisfies
∂F

∂xi
= zi F

In general we have the form F (z, x) = ez·xG(z).

The expansionG(z) =
∑

n≥0

zn cn/n! yields

hn(x) =
∑

m≥0

(

n

m

)

cmx
n−m

The condition on the degree means c0 6= 0, i.e., G(0) 6= 0.



➨ Multiplication by zi acts as differentiationDi while

∂F

∂zj
=

∑

n≥0

zn hn+ej
(x)/n!

i.e., ∂/∂zj acts as a raising operatorRjhn = hn+ej
.

With G(0) 6= 0 we can locally expressG(z) = eH(z)

F (z, x) = ez·x+H(z)

➨ The operatorsDj and ∂/∂zj satisfy

Dj F = zj F,
∂F

∂zj
=

(

xj +
∂H

∂zj

)

F

Thus,Xj denoting the operator of multiplication by xj ,

hn+ej
=

(

Xj +
∂H

∂Dj

)

hn

with ∂H/∂Dj a function of D = (D1, . . . , Dd).



Theorem 12.1 For Appell systems, given H(z) an arbitrary

function holomorphic in a neighborhood of 0, the boson

calculus is given by

Ri = Xi +
∂H

∂Di
, Vi = Di

with states |n 〉 = hn.

The corresponding coherent state is

ez·R | 0 〉 = ez·x+H(z) =
∑

n≥0

zn

n!
hn(x)



13 Evolution equation

➧ Evolution equation
∂u

∂t
= H(D)u, u(x, 0) = ez·x

has solution

u(x, t) = etH(D) ez·x = ez·x+tH(z)

➨ Appell system hn(x, t) = etH(D) xn satisfies

∂u

∂t
= H(D)u, with u(x, 0) = xn

so we see Appell systems as evolved powers.

➧ HW formulation and boson variables

Monomials xn are built by Xjx
n = xn+ej

➨ Conjugate by the flow etH

hn+ej
=

(

etH Xje
−tH

)

etH xn = etH xn+ej

So raising operators are Rj = etH Xje
−tH .



➨ By the holomorphic operator calculus we have

[etH , Xj ] = t
∂H

∂Dj
etH

so that

Rj = Xj + t
∂H

∂Dj

➧ Heisenberg-Hamiltonian flow

maps (X,D) → (R, V ) given by

R = etH Xe−tH , V = etH De−tH

➧ Heisenberg-Hamiltonian equations of motion

Ẋ = [H,X ] =
∂H

∂D
, Ḋ = [H,D] = −∂H

∂X

For H = H(D),D remains constant so V = D.



14 Stochastic formulation

➧ Convolution family of probability measures pt with

corresponding random variables Xt satisfies

〈ez·Xt 〉 =

∫

ez·x pt(dx) = etH(z)

here H(0) = 0 for probability measures.

ez·x+tH(z) =

∫

ez·(x+u) pt(du)

and

hn(x, t) =

∫

(x+ u)npt(du) = 〈(x+Xt)
n〉

are corresponding moment polynomials .

Proposition 14.1 In the stochastic case,

hn(x, t) =
∑

m≥0

(

n

m

)

µm(t)xn−m

where µm(t) are moments of the probability measure pt.

➨ infinitely divisible laws required for continuous t ?



15 Canonical systems

➧ Evolve any canonical pair (Y, V ) via H.-H. flow

Ẏ = [H,Y ] , V̇ = [H,V ]

V = V (D) is invariant. LetH ′ = (
∂H

∂D1
, . . . ,

∂H

∂DN
).

➧ Raising operator is now

R = etH Y e−tH = etH Xe−tH W (D)

= (X + tH ′)W = Y + tH ′W

➧ Canonical polynomials yn(x) = Y n1

➧ Canonical Appell system hn(x, t) = etH yn(x)

Theorem 15.1 For canonical Appell systems, we have:

1. The generating function

ev·R | 0 〉 = ex·U(v)+tH(U(v)) =
∑

n≥0

vn

n!
hn(x, t)

2. The relation eV (z)·R | 0 〉 = ez·x+tH(z)

3. The recursion operator X = RV ′ − tH ′

U(v) is the functional inverse to V : V (U(v)) = v.


