Lie algebras
 Representations and
 Analytic Semigroups through Dual Vector Fields

Philip Feinsilver

Southern Illinois University

Carbondale, Illinois USA 62901

We want to present the basics of a new point of view in a variety of areas using the idea of Dual Vector Fields. These topics include operator calculus, representations of Lie algebras, analytic semigroups, and probability semigroups.

CIMPA-UNESCO-VENEZUELA School
Mérida, Venezuela
Jan-Feb 2006

Part I.

Coherent State Representations: Operators and Duality

Simple Fock Spaces

Coherent states and Coherent State Representations

Appell families
\triangleright Simple Fock Spaces

Coherent states and Coherent State Representations

Appell families

1 Raising and lowering operators I
| vector space \mathcal{H} with a basis $\left\{\psi_{n}\right\}_{n \geq 0}$

- scalars: C, R
- Dirac notation writes $\psi_{n}=|n\rangle$, called "ket", where the label n is the eigenvalue of an operator on \mathcal{H}
- vacuum state ket $|0\rangle$ is called the vacuum state Ω
- Mapped to the zero vector by all lowering operators
- raising and lowering operators

$$
\mathcal{R}|n\rangle=|n+1\rangle \quad \mathcal{V}|n\rangle=n|n-1\rangle
$$

Generally we work with d variables setting

$$
\begin{aligned}
\mathcal{R}_{i}|n\rangle & =\left|n+\mathrm{e}_{i}\right\rangle=\left|n_{1}, \ldots, n_{i}+1, \ldots, n_{d}\right\rangle \\
\mathcal{V}_{i}|n\rangle & =n_{i}\left|n-\mathrm{e}_{i}\right\rangle
\end{aligned}
$$

\mathcal{V} is for velocity

2 Lie algebras

- Lie algebra \mathfrak{g} with product $[a, b]$ satisfies $[a, a]=0$ Jacobi identity: $[a,[b, c]]+[c,[a, b]]+[b,[c, a]]=0$ commutator $[a, b]=a b-b a$ will be used throughout

- Representation

- elements are linear maps on a vector space
- Lie product maps to the commutator

4 adjoint representation: $\quad(\operatorname{ad} a)(b)=[a, b]$
Basis $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{d}\right\}$ determines structure constants

$$
\left(\operatorname{ad} \xi_{k}\right)\left(\xi_{j}\right)=\left[\xi_{k}, \xi_{j}\right]=\sum_{i} c_{k j}^{i} \xi_{i}
$$

giving matrices of the adjoint representation

$$
\left(\check{\xi}_{k}\right)_{i j}=c_{k j}^{i}
$$

- suitable functions for realizations via differential operators are polynomials and by extension locally holomorphic functions
- formal power series are included as suitable functions

3 HW and representations

- Heisenberg-Weyl algebra is given by the commutation rule

$$
\left[\xi_{3}, \xi_{1}\right]=\xi_{2}
$$

A matrix representation of the HW algebra is
$\xi_{1}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right), \xi_{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \xi_{3}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
The adjoint representation is
$\check{\xi}_{1}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right), \check{\xi}_{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \check{\xi}_{3}=\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

- Boson realization \mathcal{R} and \mathcal{V} acting on the vectors $|n\rangle$

$$
(\mathcal{V \mathcal { R }}-\mathcal{R} \mathcal{V})|n\rangle=(n+1-n)|n\rangle=|n\rangle
$$

satisfy $[\mathcal{V}, \mathcal{R}]=I$, where I is the identity operator.
And I commutes with all operators.
So this is a representation of the HW algebra.
\Rightarrow On polynomials in d variables let

$$
X_{i}=\text { operator of multiplication by } x_{i}
$$

$$
D_{i}=\text { differentiation with respect to } x_{i}
$$

acting on the basis $|n\rangle=x^{n}=x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}$ with vacuum state $|0\rangle=1$

- Commutation relations prescribing HW(d)

$$
\left[D_{j}, X_{i}\right]=\delta_{i j} I
$$

Boson operators: any family of operators $\left\{R_{i}, V_{j}\right\}$

$$
\left[V_{j}, R_{i}\right]=\delta_{i j} I
$$

- Jordan map Any Lie algebra may be realized as vector fields

$$
\xi_{i} \leftrightarrow X_{\lambda} c_{i \mu}^{\lambda} D_{\mu}=x_{\lambda} c_{i \mu}^{\lambda} \frac{\partial}{\partial x_{\mu}}
$$

Notation. Our summation convention is:
Greek indices are always summed.

4 Gaussian

- Gaussian density $\quad p_{t}(d x)=\frac{e^{-x^{2} /(2 t)}}{\sqrt{2 \pi t}} d x$
- Moment polynomials

$$
h_{n}(x)=\int_{-\infty}^{\infty}(x+y)^{n} p_{t}(d y)
$$

In this case, we have

$$
h_{n}(x)=\int_{-\infty}^{\infty}(x+y \sqrt{t})^{n} p_{1}(d y)
$$

This may be written as an expected value

$$
h_{n}(x)=\left\langle\left(x+X_{t}\right)^{n}\right\rangle
$$

where X_{t} is the corresponding Gaussian variable.
Lowering operator: $V=D$, i.e., $D h_{n}=n h_{n-1}$
Raising operator: $R=X+t D$

- Recurrence formula Write $X=R-t D=R-t V$

$$
x h_{n}=h_{n+1}-\operatorname{tn} h_{n-1}
$$

\Rightarrow Hermite polynomials are orthogonal with respect to the Gaussian distribution

$$
H_{n}(x)=\int_{-\infty}^{\infty}(x+i y)^{n} p_{t}(d y)
$$

where $i=\sqrt{-1}$.

- For the Hermite polynomials

$$
R=X-t D, \quad V=D
$$

The recurrence is thus

$$
x \psi_{n}=h_{n+1}+t n h_{n-1}
$$

which is the three-term recurrence a family of orthogonal polynomials must satisfy.

- $L=R^{*}=t V$, the operator adjoint to R with respect to the inner product

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(y) g(y) p_{t}(d y)
$$

on polynomials or smooth functions with derivatives in $L^{2}(\mathbf{R})$ of the corresponding Gaussian measure.

5 Poisson

- Poisson distribution

$$
p_{t}(x)=e^{-t} \frac{t^{x}}{x!}
$$ for integer $x \geq 0$.

- Poisson-Charlier polynomials are orthogonal with respect to this Poisson distribution. A generating function is

$$
G(v)=G(v ; x, t)=(1+v)^{x} e^{-v t}=\sum_{n \geq 0} \frac{v^{n}}{n!} P_{n}(x, t)
$$

\Rightarrow Difference operator expressed in terms of D is

$$
\left(e^{D}-1\right) f(x)=f(x+1)-f(x)
$$

- Duality

"Multiplication by v " \leftrightarrow lowering operator $V P_{n}=n P_{n-1}$

$$
V=e^{D}-1
$$

"Differentiation wrt v " \leftrightarrow raising operator $R P_{n}=P_{n+1}$
The operators V, R are given by transferring the HW representation "multiplication by v, differentiation with respect to v " via generating function G to the vector space spanned by $\left\{P_{n}\right\}$
\Rightarrow To find R we must express $\partial / \partial v$ in terms of X and D.

Observe

$$
\frac{1}{1+V}=e^{-D}
$$

yielding the HW representation

$$
R=X e^{-D}-t I, \quad V=e^{D}-I
$$

Solving, we find

$$
X=(R+t)(1+V)=t+R+R V+t V
$$

Note that $R V$ is the number operator: $R V P_{n}=n P_{n}$

And the form of X gives the recurrence formula

$$
x P_{n}=P_{n+1}+(n+t) P_{n}+n t P_{n-1}
$$

The Lie algebra generated by $\{R, V, R V\}$ is the oscillator algebra.

6 Analytic representations of HW

- The HW relation $\quad[V, R]=I$ implies that for any polynomial $f(x)$

$$
[V, f(R)]=f^{\prime}(R)
$$

acting on kets. Dually,

$$
[f(V), R]=f^{\prime}(V)
$$

These extend to suitable functions f.

- Canonical operators $V(z)$ is a locally holomorphic function, $V(0)=0, V^{\prime}(0) \neq 0, W(D)=V^{\prime}(D)^{-1}$.

$$
Y=X W(D), \quad V=V(D)
$$

The vacuum for the representation is the function equal to 1 .
Acting on polynomials or exponential functions in x, $[V(D), X W(D)]=V^{\prime}(D) W(D)=I$. Thus

$$
[V, Y]=I
$$

Simple Fock Spaces

\triangleright Coherent states and Coherent State Representations

Appell families

7 Raising and lowering operators II

- Question how to express various operators of the representation of a Lie algebra in terms of R 's and V 's?
- Adjoint of R with respect to the inner product on the L^{2} space of the underlying measure gives the lowering operator L
- Squared norms determine its properties. Let

$$
L \psi_{n}=b_{n} \psi_{n-1}
$$

Then the condition $L=R^{*}$ yields

$$
\left\langle\psi_{n}, \psi_{n}\right\rangle=\gamma_{n}=b_{n} \gamma_{n-1}
$$

With $\|\Omega\|^{2}=1, b_{0}=0$, we get

$$
\gamma_{n}=b_{1} b_{2} \cdots b_{n}
$$

I. For the Gaussian, $R=X-t D, L=t D$ so the squared norms are

$$
\left\|H_{n}\right\|^{2}=t^{n} n!
$$

8 Coherent states

- Coherent state $\psi_{v}=e^{v R} \Omega$

Let $\left\langle\psi_{n}, \psi_{m}\right\rangle=\delta_{m n} n$! with squared norms $\gamma_{n}=n$!
In this case $L=V: \quad\left\langle\psi_{n}, R \psi_{m}\right\rangle=\left\langle V \psi_{n}, \psi_{m}\right\rangle$

- Duality goes like this

$$
V \psi_{v}=V e^{v R} \Omega=e^{v R} V \Omega+\left[V, e^{v R}\right] \Omega=v e^{v R} \Omega=v \psi_{v}
$$

Thus, on ψ_{v} we have

$$
R \psi_{v}=\frac{\partial}{\partial v} \psi_{v}, \quad V \psi_{v}=v \psi_{v}
$$

- Leibniz function Multiplying by v^{m} / m ! and summing gives $\left\langle\psi_{n}, \psi_{v}\right\rangle=v^{n}$. Multiplying by w^{n} / n ! and summing gives the inner product of coherent states

$$
\left\langle\psi_{w}, \psi_{v}\right\rangle=\Upsilon_{w v}=e^{w v}
$$

- Partial differential equation for Υ

$$
\frac{\partial \Upsilon}{\partial w}=\left\langle R \psi_{w}, \psi_{v}\right\rangle=v \Upsilon
$$

compactly expresses the relation $R^{*}=V$.

9 Coherent states for HW

- coherent state representation of an operator Q

$$
\langle Q\rangle_{w v}=\frac{\left\langle\psi_{w}, Q \psi_{v}\right\rangle}{\left\langle\psi_{w}, \psi_{v}\right\rangle}
$$

\Rightarrow Gaussian case: $R=X-t D, L=t D$. We find

$$
\Upsilon_{w v}=\left\langle e^{w R} \Omega, e^{v R} \Omega\right\rangle=e^{t w v}
$$

- Differentiating with respect to v yields the CSR of R, differentiating with respect to w yields the CSR of L :

$$
\langle R\rangle_{w v}=t w, \quad\langle L\rangle_{w v}=t v
$$

- The Leibniz function satisfies the PDE

$$
\frac{\partial \Upsilon}{\partial w}=t v \Upsilon
$$

another way to see that $L=t V$.

10 sl(2)

- sl(2) is the Lie algebra of 2×2 matrices of trace zero.

The standard basis is

$$
R=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \rho=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \Delta=\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right)
$$

- Commutation relations

$$
[\Delta, R]=\rho, \quad[\rho, R]=2 R, \quad[\Delta, \rho]=2 \Delta
$$

On radial functions, Δ is one-half times the Laplacian
$\Delta=\frac{1}{2} \sum \frac{\partial^{2}}{\partial x_{j}^{2}}, \quad R=\frac{1}{2} \sum x_{j}^{2}, \quad \rho=\sum x_{j} \frac{\partial}{\partial x_{j}}+\frac{d}{2}$
\Rightarrow Representation space has basis

$$
\psi_{n}=R^{n} \Omega, \quad \text { with } \quad \Delta \Omega=0, \quad \rho \Omega=c \Omega
$$

- Commutation rule corresponding to Leibniz' rule for differentiating a power function times another function

$$
\left[\Delta, R^{n}\right]=n(\rho+n-1) R^{n-1}
$$

- On the vacuum state $\Delta \psi_{n}=n(c+n-1) \psi_{n-1}$

11 Coherent states for sl(2)

- Lowering operator $L=\Delta=c V+R V^{2}$
- squared norms $\gamma_{n}=n!(c)_{n}$
- Coherent state $\psi_{v}=e^{v R} \Omega$
- $\left\langle\psi_{n}, \psi_{v}\right\rangle=(c)_{n} v^{n}$ and the Leibniz function is

$$
\Upsilon_{w v}=(1-w v)^{-c}
$$

which satisfies $\frac{\partial \Upsilon}{\partial w}=c v \Upsilon+v^{2} \frac{\partial \Upsilon}{\partial v}$.

- Operators $\hat{R}=R, \hat{\Delta}=c V+R V^{2}$ and

$$
\hat{\rho}=[\hat{\Delta}, \hat{R}]=c+2 R V
$$

Then $(c+2 R V) \psi_{v}=\left(c+2 v \frac{\partial}{\partial v}\right) \psi_{v}$
gives $\langle\rho\rangle_{w v}=c+\frac{2 v}{\Upsilon} \frac{\partial \Upsilon}{\partial v}$. The CSR's are

$$
\langle R\rangle_{w v}=\frac{c w}{1-w v}, \quad\langle\rho\rangle_{w v}=c \frac{1+w v}{1-w v}, \quad\langle L\rangle_{w v}=\frac{c v}{1-w v}
$$

Simple Fock Spaces

Coherent states and Coherent State Representations

\triangleright Appell families

12 Definition

- Appell systems $\left\{h_{n}\right\}$ are defined by these properties:
(1) $\quad h_{n}(x)$ is a polynomial of degree $n, \quad n \geq 0$
(2) $\quad D h_{n}(x)=n h_{n-1}(x)$

For $N \geq 1$, we have analogously

- $h_{n}(x)$ is a polynomial of degree $|n|, \quad n \geq 0$
$-D_{j} h_{n}(x)=n_{j} h_{n-\mathrm{e}_{j}}(x)$
- Generating function $\quad F(z, x)=\sum_{n \geq 0} z^{n} h_{n}(x) / n$! satisfies

$$
\frac{\partial F}{\partial x_{i}}=z_{i} F
$$

In general we have the form $F(z, x)=e^{z \cdot x} G(z)$.
The expansion $G(z)=\sum_{n \geq 0} z^{n} c_{n} / n$! yields

$$
h_{n}(x)=\sum_{m \geq 0}\binom{n}{m} c_{m} x^{n-m}
$$

The condition on the degree means $c_{0} \neq 0$, i.e., $G(0) \neq 0$.
\Rightarrow Multiplication by z_{i} acts as differentiation D_{i} while

$$
\frac{\partial F}{\partial z_{j}}=\sum_{n \geq 0} z^{n} h_{n+\mathrm{e}_{j}}(x) / n!
$$

i.e., $\partial / \partial z_{j}$ acts as a raising operator $R_{j} h_{n}=h_{n+\mathrm{e}_{j}}$. With $G(0) \neq 0$ we can locally express $G(z)=e^{H(z)}$

$$
F(z, x)=e^{z \cdot x+H(z)}
$$

- The operators D_{j} and $\partial / \partial z_{j}$ satisfy

$$
D_{j} F=z_{j} F, \quad \frac{\partial F}{\partial z_{j}}=\left(x_{j}+\frac{\partial H}{\partial z_{j}}\right) F
$$

Thus, X_{j} denoting the operator of multiplication by x_{j},

$$
h_{n+\mathrm{e}_{j}}=\left(X_{j}+\frac{\partial H}{\partial D_{j}}\right) h_{n}
$$

with $\partial H / \partial D_{j}$ a function of $D=\left(D_{1}, \ldots, D_{d}\right)$.

Theorem 12.1 For Appell systems, given $H(z)$ an arbitrary function holomorphic in a neighborhood of 0 , the boson calculus is given by

$$
R_{i}=X_{i}+\frac{\partial H}{\partial D_{i}}, \quad V_{i}=D_{i}
$$

with states $|n\rangle=h_{n}$.

The corresponding coherent state is

$$
e^{z \cdot R}|0\rangle=e^{z \cdot x+H(z)}=\sum_{n \geq 0} \frac{z^{n}}{n!} h_{n}(x)
$$

13 Evolution equation

- Evolution equation $\frac{\partial u}{\partial t}=H(D) u, u(x, 0)=e^{z \cdot x}$ has solution

$$
u(x, t)=e^{t H(D)} e^{z \cdot x}=e^{z \cdot x+t H(z)}
$$

- Appell system $h_{n}(x, t)=e^{t H(D)} x^{n}$ satisfies

$$
\frac{\partial u}{\partial t}=H(D) u, \text { with } u(x, 0)=x^{n}
$$

so we see Appell systems as evolved powers.

- HW formulation and boson variables

Monomials x^{n} are built by $\quad X_{j} x^{n}=x^{n+\mathrm{e}_{j}}$
\Rightarrow Conjugate by the flow $e^{t H}$

$$
h_{n+\mathrm{e}_{j}}=\left(e^{t H} X_{j} e^{-t H}\right) e^{t H} x^{n}=e^{t H} x^{n+\mathrm{e}_{j}}
$$

So raising operators are $\quad R_{j}=e^{t H} X_{j} e^{-t H}$.
\Rightarrow By the holomorphic operator calculus we have

$$
\left[e^{t H}, X_{j}\right]=t \frac{\partial H}{\partial D_{j}} e^{t H}
$$

so that

$$
R_{j}=X_{j}+t \frac{\partial H}{\partial D_{j}}
$$

- Heisenberg-Hamiltonian flow
maps $(X, D) \rightarrow(R, V)$ given by

$$
R=e^{t H} X e^{-t H}, \quad V=e^{t H} D e^{-t H}
$$

- Heisenberg-Hamiltonian equations of motion

$$
\dot{X}=[H, X]=\frac{\partial H}{\partial D}, \quad \dot{D}=[H, D]=-\frac{\partial H}{\partial X}
$$

For $H=H(D), D$ remains constant so $V=D$.

14 Stochastic formulation

- Convolution family of probability measures p_{t} with corresponding random variables X_{t} satisfies

$$
\left\langle e^{z \cdot X_{t}}\right\rangle=\int e^{z \cdot x} p_{t}(d x)=e^{t H(z)}
$$

here $H(0)=0$ for probability measures.

$$
e^{z \cdot x+t H(z)}=\int e^{z \cdot(x+u)} p_{t}(d u)
$$

and

$$
h_{n}(x, t)=\int(x+u)^{n} p_{t}(d u)=\left\langle\left(x+X_{t}\right)^{n}\right\rangle
$$

are corresponding moment polynomials.
Proposition 14.1 In the stochastic case,

$$
h_{n}(x, t)=\sum_{m \geq 0}\binom{n}{m} \mu_{m}(t) x^{n-m}
$$

where $\mu_{m}(t)$ are moments of the probability measure p_{t}.

- infinitely divisible laws required for continuous t ?

15 Canonical systems

- Evolve any canonical pair (Y, V) via H.-H. flow

$$
\dot{Y}=[H, Y], \quad \dot{V}=[H, V]
$$

$V=V(D)$ is invariant. Let $H^{\prime}=\left(\frac{\partial H}{\partial D_{1}}, \ldots, \frac{\partial H}{\partial D_{N}}\right)$.

- Raising operator is now

$$
\begin{aligned}
R & =e^{t H} Y e^{-t H}=e^{t H} X e^{-t H} W(D) \\
& =\left(X+t H^{\prime}\right) W=Y+t H^{\prime} W
\end{aligned}
$$

- Canonical polynomials $y_{n}(x)=Y^{n} 1$
-Canonical Appell system $\quad h_{n}(x, t)=e^{t H} y_{n}(x)$
Theorem 15.1 For canonical Appell systems, we have:

1. The generating function

$$
e^{v \cdot R}|0\rangle=e^{x \cdot U(v)+t H(U(v))}=\sum_{n \geq 0} \frac{v^{n}}{n!} h_{n}(x, t)
$$

2. The relation $\quad e^{V(z) \cdot R}|0\rangle=e^{z \cdot x+t H(z)}$
3. The recursion operator $X=R V^{\prime}-t H^{\prime}$
$U(v)$ is the functional inverse to $V: V(U(v))=v$.
