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1. Introduction

In studying representability of matroids, Lindström [42] gave a combinatorial interpretation to certain
determinants in terms of disjoint paths in digraphs. In a previous paper [25], the authors applied this theorem
to determinants of binomial coefficients. Here we develop further applications. As in [25], the paths under
consideration are lattice paths in the plane. Our applications may be divided into two classes: first are those
in which a determinant is shown to count some objects of combinatorial interest, and second are those which
give a combinatorial interpretation to some numbers which are of independent interest. In the first class are
formulas for various types of plane partitions, and in the second class are combinatorial interpretations for
Fibonomial coefficients, Bernoulli numbers, and the less-known Salié and Faulhaber numbers (which arise in
formulas for sums of powers, and are closely related to Genocchi and Bernoulli numbers).

Other enumerative applications of disjoint paths and related methods can be found in [14], [26], [19],
[51–54], [57], and [67].

2. Lindström’s theorem

Let D be an acyclic digraph. D need not be finite, but we assume that there are only finitely many
paths between any two vertices. Let k be a fixed positive integer. A k-vertex is a k-tuple of vertices of
D. If u = (u1, . . . , uk) and v = (v1, v2, . . . , vk) are k-vertices of D, a k-path from u to v is a k-tuple
A = (A1, A2, . . . , Ak) such that Ai is a path from ui to vi. The k-path A is disjoint if the paths Ai are
vertex-disjoint. Let Sk be the set of permutations of {1, 2, . . . , k}. Then for π ∈ Sk, by π(v) we mean the
k-vertex

(
vπ(1), . . . , vπ(k)

)
.

Let us assign a weight to every edge of D. We define the weight of a path to be the product of the
weights of its edges and the weight of a k-path to be the product of the weights of its components. Let
P(ui, vj) be the set of paths from ui to vj and let P (ui, vj) be the sum of their weights. Define P(u,v) and
P (u,v) analogously for k-paths from u to v. Let N(u,v) be the subset of P(u,v) of disjoint paths and let
N(u,v) be the sum of their weights. It is clear that for any permutation π of {1, 2, . . . , k},

P
(
u, π(v)

)
=

k∏
i=1

P
(
ui, vπ(i)

)
(2.1)

We use the notation |mij |sr to denote the determinant of the matrix (mij)i,j=r,...,s.

Theorem 1. (Lindström [42])∑
π∈Sk

(sgnπ)N
(
u, π(v)

)
= |P (ui, vj)|k1 .
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Proof. By (2.1) and the definition of a determinant, the formula is equivalent to

∑
π∈Sk

(sgnπ)N
(
u, π(v)

)
=
∑
π∈Sk

(sgnπ)P
(
u, π(v)

)
. (2.2)

To prove (2.2) we construct a bijection A 7→ A∗ from

⋃
π∈Sk

[
P
(
u, π(v)

)
− N

(
u, π(v)

)]
to itself with the following properties:

(i) A∗∗ = A.

(ii) The weight of A∗ equals the weight of A.

(iii) If A ∈ P
(
u, π(v)

)
and A∗ ∈ P

(
u, σ(v)

)
, then sgnσ = − sgnπ.

We can then group together terms on the right side of (2.2) corresponding to pairs {A,A∗} of nondisjoint
k-paths, and all terms cancel except those on the left.

To construct the bijection, let A = (A1, . . . , Ak) be a nondisjoint k-path. Let i be the least integer for
which Ai intersects another path. Let x be the first point of intersection of Ai with another path and let j be
the least integer greater than i for which Aj meets x. Construct A∗i by following Ai to x and then following
Aj to its end, and construct A∗j similarly from Aj and Ai. For l 6= i, j, let A∗l = Al. Then properties (i),
(ii), and (iii) are easily verified and the theorem is proved.

It is interesting to note that Lindström’s applications of Theorem 1 are totally different from ours.

Let us say that a pair (u,v) of k-vertices is nonpermutable if N(u, π(v)) is empty whenever π is not the
identity permutation. Then we have the following important corollary of Theorem 1:

Corollary 2. If (u,v) is nonpermutable, then N(u,v) = |P (ui, vj)|k1 .

An argument similar to that of Theorem 1 was apparently first given by Chaundy [11] in his work on
plane partitions. (Thanks to David Bressoud for this reference.) Another related argument was given by
Karlin and MacGregor [36]. We thank Joseph Kung for bringing Lindström’s paper to our attention.

3. Plane partitions and tableaux

First we give some definitions. A partition λ = (λ1, λ2, . . . , λk) is a nonincreasing sequence of non-
negative integers, called the parts of λ. The sum of the parts of λ is denoted by |λ|. It is convenient to
identify two partitions which differ only in the number of zeros. (All our formulas will remain valid under
this identification.)

The diagram (or Ferrers diagram) of λ is an arrangements of squares with λi squares, left justified, in
the ith row. (Zero parts are ignored.) We follow Macdonald [43] and draw the first (largest) part at the top,
so that the diagram of (42) is

The conjugate λ′ of λ is the partition whose diagram is the transpose of that of λ. We write λ ≥ µ if λi ≥ µi
for each i. If λ ≥ µ, then the diagram of λ− µ is obtained from the diagram of λ by removing the diagram
of µ.
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If λi = µi−1 + 1 for i > 1, then the diagram of λ − µ is called a skew hook (also called rim hook or
border strip). For example,

is a skew hook of shape (54421)− (331).
By an array we mean an array (pij) of integers defined for some values of i and j. A (skew) plane

partition of shape λ−µ is a filling of the diagram of λ−µ with integers which are weakly decreasing in every
row and column, or equivalently (if λ and µ have k parts), an array (pij) of integers defined for 1 ≤ i ≤ k
and µi < j ≤ λi satisfying

pij ≥ pi,j+1 (3.1)
and

pij ≥ pi+1,j (3.2)

whenever these entries are defined. The integers pij are called the parts of the plane partition. For example,
a plane partition of shape (431)− (110) is

3 3 1

3 0

4

If µ has no nonzero parts, it is omitted. The plane partition (pij) is row-strict if (3.2) is replaced by
pij > pi,j+1 and column-strictness is defined similarly.

Reverse plane partitions are defined by reversing all inequalities in the above definitions.
A tableau is a column-strict reverse plane partition. A row-strict tableau is a row-strict (but not nec-

essarily column-strict) reverse plane partition. A standard tableau is a reverse plane partition in which the
parts are 1, 2, . . . , n, without repetitions, for some n.

We shall first apply Theorem 1 to the digraph in which the vertices are lattice points in the plane and
the edges go from (i, j) to (i, j+ 1) and (i+ 1, j). Thus paths in this digraph are ordinary lattice paths with
unit horizontal and vertical steps. Later, we shall consider some modifications of this digraph.

Correspondences between k-paths and arrays are important in what follows. We restrict ourselves to
k-paths from u to v where ui = (ai, bi) and vi = (ci, di), and the parameters satisfy ai+1 < ai, bi+1 ≥ bi,
ci+1 < ci, and di+1 ≥ di for all i. These conditions imply that (u,v) is nonpermutable. The strictness
conditions, which are not necessary for nonpermutability, allow shapes to be parametrized by partitions, and
allow a simpler translation of the disjointness condition on k-paths into a condition on arrays.

The correspondences are determined by first choosing a labeling of all the horizontal steps in the digraph
of lattice points. Then we associate to a k-path an array in which row i consists of the labels of the horizontal
steps of path i, with each row shifted one place to the right in relation to the previous row. As an example,

Figure 1

in Figure 1 the horizontal step from (l, h) to (l+ 1, h) is assigned the label h and the corresponding array is

1 1

1 2 2

2 4
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With this labeling, a disjoint k-path corresponds to a tableau. If instead we assign to the horizontal step
Figure 2

from (l, h) to (l + 1, h) the label l + h, as in Figure 2, the corresponding array is a row-strict tableau:

2 3

0 2 3

0 3

To construct the most general labeling, it is convenient to start with the first labeling described above,
and then “relabel.”

The first correspondence sketched above, which assigns to the k-path A an array T , may be described
more formally as follows: If there is a horizontal step from (l, h) to (l+ 1, h) in path i, then we define Ti,l+i
to be h. In other words, Tij is the height of the horizontal step in path i from x = j − i to x = j − i + 1
if such a step exists, and is undefined otherwise. The essential fact about this correspondence is that A is
disjoint if and only if T is a tableau. (As a technicality, in order to be consistent with the requirement that
j ≥ 1 for all parts Tij , we need that ak > −k.) Note that a tableau does not uniquely determine a k-path
since the endpoints are not determined. However the correspondence does give a bijection between tableaux
of shape λ − µ satisfying bi ≤ Tij ≤ di, where µi = ai + i − 1 and λi = ci + i − 1, and k-paths with initial
points (ai, bi) and endpoints (ci, di). Theorem 1 allows us then to count these tableaux.

We now “relabel” the tableau. Let L be a set of “labels” (which will usually be integers). For each
p ∈ L we have a weight w(p), usually an indeterminate. A relabeling function is a sequence f = {fi}∞i=−∞
of injective functions from the integers to L. Given a relabeling function f we define the weight of a vertical
step to be 1 and the weight of a horizontal step from (r, s) to (r+ 1, s) to be w(fr(s)). Then the sum of the
weights of all paths from (a, b) to (c, d) is

Hf (a, b, c, d) =
∑

w(fa(na))w(fa+1(na+1)) · · ·w(fc−1(nc−1)), (3.3)

where the sum is over all sequences na, . . . , nc−1 satisfying

b ≤ na ≤ na+1 ≤ · · · ≤ nc−1 ≤ d.

(If a = c then Hf (a, b, c, d) is 1 if b ≤ d and 0 if b > d.)
Now let T = (Tij) be a tableau. We define U = f(T ) to be an array of the same shape as T with

Uij = fj−i(Tij). Each fi applies to a diagonal of the tableau since horizontal steps with the same abscissa
correspond to tableau entries lying on the same diagonal. Thus the involution in the proof of Theorem 1
moves labels along a diagonal of the array, and so the same weighting must apply to a label in all positions
on a diagonal

The condition that Tij be a tableau satisfying bi ≤ Tij ≤ di is equivalent to the conditions

f−1
j−i(Uij) ≤ f−1

j−i+1(Ui,j+1)

f−1
j−i(Uij) < f−1

j−i−1(Ui+1,j) (3.4)

bi ≤ f−1
j−i(Uij) ≤ di.

The reader may check, for example, that if we take fi(n) = n+ i, then f(T ) is a row-strict tableau and if we
take fi(n) = −n, then f(T ) is a column-strict plane partition. Let us define the weight of U = f(T ) to be∏
u w(u) over all parts u of U . Then by Theorem 1, the sum of the weights of all arrays of the form f(T ),

where T is a tableau of shape λ − µ, and bi ≤ Tij ≤ di, is the determinant |P (ui, vj)|k1 ,where ui = (ai, bi),
vi = (ci, di), µi = ai + i− 1, and λi = ci + i− 1. Thus we have
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Theorem 3. Let f be a relabeling function, let λ and µ be partitions with k parts, and let the integers
bi and di satisfy bi+1 ≥ bi and di+1 ≥ di. Then the sum of the weights of f(t) over all tableaux T of shape
λ− µ satisfying bi ≤ Tij ≤ di is

|Hf (µi − i+ 1, bi, λj − j + 1, dj)|k1 , (3.5)

where Hf is defined by (3.3).

In Section 5, we will use Theorem 3 to count tableaux in which an entry l in position (i, j) is assigned
the weight xli−j . For now, we consider the case in which fi(n) = n + ti for some number t, with w(l) = xl,
where the xl are indeterminates. Here Hf (a, b, c, d) becomes∑

xna+taxna+1+t(a+1) · · ·xnc−1+t(c−1), (3.6)

where the sum is over b ≤ na ≤ na+1 ≤ · · · ≤ nc−1 ≤ d. If we set nj + tj = mj−a+1, we may rewrite (3.6) as∑
m1,m2,···,mc−a

xm1 · · ·xmc−a ,

where the sum is over all sequences m1, . . . ,mc−a satisfying m1 ≥ b+ ta, mc−a ≤ d+ t(c− 1), and mj+1 ≥
mj + t.

Let us now write H(t)
n (a, b) for

∑
xi1xi2 · · ·xin over all i1, . . . , in satisfying i1 ≥ a, in ≤ b, and il+1 ≥ il+t

for all l. Note that for t = 0, H(t)
n (a, b) is the complete symmetric function of degree n in xa, . . . , xb, and for

t = 1 it is the elementary symmetric function of degree n in these variables. For other values of t, H(t)
n (a, b)

is not symmetric.
We find that (3.5) reduces to

H
(t)
λj−µi+i−j

(
bi + t(µi − i+ 1), dj + t(λj − j)

)
,

and simplifying (3.4) we obtain the following:

Corollary 4. Let λ and µ be partitions with k parts and let the integers bi and di satisfy bi+1 and
di+1 ≥ di. Then the sum of the weights of all arrays U of shape λ− µ satisfying

Uij ≤ Ui,j+1 − t (3.7)

Uij < Ui+1,j + t (3.8)

bi + t(j − i) ≤ Uij ≤ di + t(j − i) (3.9)

is ∣∣∣H(t)
λj−µi+i−j (bi + t(µi − i+ 1), dj + t(λj − j))

∣∣∣k
1
.

Note that (3.9) may be replaced by inequalities on only the first and last element of each row:

bi + t(µi + 1− i) ≤ Ui,µi+1

and
Ui,λi ≤ di + t(λi − i).

If we set Ai = bi + t(µi − i+ 1) and Bi = di + t(λi − i) we may restate this result as follows:
Let λ and µ be partitions with k parts and let the integers Ai and Bi satisfy Ai+1−Ai ≥ t(µi+1−µi−1)

and Bi+1 − Bi ≥ t(λi+1 − λi − 1). Then the sum of the weights of all arrays U of shape λ − µ satisfying
(3.7), (3.8), and

Ai ≤ Ui,µi+1, Ui,λi ≤ Bi
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is
∣∣∣H(t)

λj−µi+i−j(Ai, Bj)
∣∣∣k
1
.

We obtain further interesting results by substituting for the variables, or removing the part restrictions.
In the cases t = 0 and t = 1, these generating functions are called flagged Schur functions [72].

First we remove the part restrictions in Corollary 4. We can do this most easily by taking the limit as
bi goes to −∞ and di goes to +∞. (It is easily verified that this is legitimate.) Let us define h(t)

n by

h(t)
n = lim

a→−∞
b→∞

H(t)
n (a, b) =

∑
xi1 · · ·xin

where the sum is over all i1, . . . , in satisfying il+1 ≥ il + t for all l.

Thus h(0)
n is the ordinary complete symmetric function hn and h(1)

n is the elementary symmetric function
en. Let us write s(t)

λ/µ for the determinant |h(t)
λi−µj+j−i|

k
1 . (To agree with usual practice we have transposed

the determinant in Corollary 4.) Thus for t = 0, s(t)
λ/µ is the ordinary Schur function. Then we have

Corollary 5. s
(t)
λ/µ is the sum of the weights of all arrays p of shape λ− µ satisfying

pij ≤ pi+1,j − t
= pij < pi,j+1 + t.

Let us call these tableaux t-tableaux . Note that the conjugate of a t-tableau is a (1 − t)-tableau. It
follows that s(1−t)

λ/µ = s
(t)
λ′/µ′ . If we set e(t)

n = h
(1−t)
n then we also have

s
(t)
λ/µ = |e(t)

λ′
i
−µ′

j
+j−i|k1 , (3.10)

which reduces to a well-known formula in the case t = 0.
There is a homomorphism θ from symmetric functions to exponential generating functions which is

useful in counting standard tableaux. If f is any symmetric function we define

θ(f) =
∞∑
n=0

fn
zn

n!
,

where fn is the coefficient of x1x2 · · ·xn in f . It is easily verified that θ is a homomorphism and that
θ(hn) = zn/n!. (See, for example, [24].) In particular, from the symmetric generating function |hλi−µj+j−i|k1
for tableaux of shape λ− µ, we obtain the exponential generating function∣∣∣∣ zλi−µj+j−i

(λi − µj + j − i)!

∣∣∣∣k
1

for standard tableaux of shape λ − µ. Since each standard tableau contributes a term zn/n!, where n =∑
i(λi − µi), the number of standard tableaux of shape λ− µ is

n!
∣∣∣∣ 1
(λi − µj + j − i)!

∣∣∣∣k
1

.

An interesting question is whether there is any reasonable expression for the coefficient of x1x2 · · ·xn in s(t)
λ/µ.
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4. The dimer problem

In the case t = −1 we can derive some particularly nice formulas which yield a surprising connection
between tableaux and the dimer problem. Let us evaluate e(−1)

n = h
(2)
n at x1 = · · · = xm−1 = 1, xi = 0 for

other i. This is the number of sequences a1, . . . , an satisfying a1 ≥ 1, an ≤ m − 1, and ai+1 ≥ ai + 2. We
may rewrite this condition as

1 ≤ a1 < a2 − 1 < a3 − 2 < · · · < an − n+ 1 ≤ m− n,

so the number of such sequences is
(
m−n
n

)
. Let us set

Pm(u) =
∑
n

e(−1)
n (1, . . . , 1︸ ︷︷ ︸

m−1

)un =
bm/2c∑
n=0

(
m− n
n

)
un.

Lemma 6.

Pm(u) =
bm/2c∏
j=1

(1 + 4u cos2 jπ

m+ 1
).

Proof. By Riordan [55, pp. 75–76] we have

Pm(u) = (−i)mum/2Um
(

i

2
√
u

)
,

where i =
√
−1 and Um(x) is the Chebyshev polynomial determined by Um(cos θ) = sin(m+1)θ/ sin θ. Since

Um(x) is a polynomial of degree m with leading coefficient 2m which vanishes at x = cos(jπ/(m + 1)) for
j = 1, . . . ,m, we have

Um(x) = 2m
m∏
j=1

(
x− cos

jπ

m+ 1

)
.

Since

cos
jπ

m+ 1
= − cos

(
π − jπ

m+ 1

)
= − cos

(m+ 1− j)π
m+ 1

,

we have

Um(x) =


2m

m/2∏
j=1

(
x2 − cos2 jπ

m+ 1

)
, m even;

2mx
(m−1)/2∏
j=1

(
x2 − cos2 jπ

m+ 1

)
, m odd.

Thus for m even we have

Pm(u) = (−u)m/22m
m/2∏
j=1

(
− 1

4u
− cos2 jπ

m+ 1

)
=
m/2∏
j=1

(
1 + 4u cos2 jπ

m+ 1

)

and for m odd we have

Pm(u) = (−i)mum/22m
i

2
√
u

(m−1)/2∏
j=1

(
− 1

4u
− cos2 jπ

m+ 1

)
=

(m−1)/2∏
j=1

(
1 + 4 cos2 jπ

m+ 1

)
.
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Theorem 7.

s
(−1)
λ/µ (1, . . . , 1︸ ︷︷ ︸

m−1

) = sλ/µ

(
4 cos2 π

m+ 1
, . . . , 4 cos2 bm/2cπ

m+ 1

)
.

Proof. By Lemma 6, we have

e(−1)
n (1, . . . , 1︸ ︷︷ ︸

m−1

) = en

(
4 cos2 π

m+ 1
, . . . , 4 cos2 bm/2cπ

m+ 1

)
.

Then the result follows from the cases t = −1 and t = 0 of (3.10).
Let us call a rectangle of height m and width m an m × n rectangle. The dimer problem is concerned

with the number of ways of covering a rectangle with 1× 2 (horizontal) and 2× 1 (vertical) dominoes. We
shall consider here only the case of an m× n rectangle in which both m and n are even. (Similar formulas
exist when m and n are of opposite parity.) In this case it is easy to see that any covering must contain
an even number of horizontal dominoes and an even number of vertical dominoes. Now let us assign to a
covering with i vertical dominoes and j horizontal dominoes the weight ui/2vj/2. Kasteleyn [37] showed that
the sum of the weights of all coverings of an m× n rectangle (which he calls an n×m rectangle) is

m/2∏
i=1

n/2∏
j=1

(
4u cos2 iπ

m+ 1
+ 4v cos2 jπ

n+ 1

)
. (4.1)

We can also interpret the product in (4.1) in terms of tableaux. Macdonald [43, Ex. 5, p. 37] gives the
formula

r∏
i=1

s∏
j=1

(xi + yj) =
∑
λ

sλ(x)sλ̃′(y),

where the sum is over all partitions λ with at most r parts and largest part at most s, and

λ̃′ = (r − λ′s, . . . , r − λ′1),

i.e., the diagram of λ̃, when rotated 180◦, fits together with the diagram of λ to form an r × s rectangle. It
follows that with m = 2r and n = 2s we have

m/2∏
i=1

n/2∏
j=1

(
4u cos2 iπ

m+ 1
+ 4v cos2 jπ

n+ 1

)
=
∑
λ

s
(−1)
λ (1, . . . , 1︸ ︷︷ ︸

m−1

)s(−1)

λ̃′
(1, . . . , 1︸ ︷︷ ︸

n−1

)u|λ|v|λ̃
′|

=
∑
λ

s
(−1)
λ (1, . . . , 1︸ ︷︷ ︸

m−1

)s(2)

λ̃
(1, . . . , 1︸ ︷︷ ︸

n−1

)u|λ|v|λ̃
′| (4.2)

The sum on the right side of (4.2) has a simple combinatorial interpretation: Let us define a dimer
tableau to be an array (pij) with entries chosen from the alphabet A ∪ A′, where A = {1, . . . ,m − 1} and
A′ = {1′, . . . , (n− 1)′} such that if pi,j = α and pi+1,j = β, one of the following holds:

(1) α ∈ A and β ∈ A′,
(2) α, β ∈ A and α ≤ β + 1,
(3) α, β ∈ A′ and α < β − 1′,

and if pij = γ and pi,j+1 = δ, one of the following holds:

(1) γ ∈ A and δ ∈ A′,
(2) γ, δ ∈ A and γ < δ − 1,
(3) γ, δ ∈ A′ and γ ≤ δ + 1′.

(The total order, addition, and subtraction in A′ have their obvious meaning.) A dimer tableau with i entries
in A and j entries in A′ is assigned the weight uivj . Then we have
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Theorem 8. Let m and n be even. Then the number of coverings of an m× n rectangle by 2i vertical
dominoes and 2j horizontal dominoes is equal to the number of (m/2)× (n/2) dimer tableaux with i entries
in {1, . . . ,m− 1} and j entries in {1′, . . . , (n− 1)′}.

A simple bijection between these two sets would be interesting. Such a bijection is easy to construct
for m = 2. Here the dimer tableau has only one row, which consists of some number of 1’s followed by a
sequence of elements of {1′, 2′, . . . , (n−1)′}, each at least 2′ more than its predecessor. Given such a tableau,
we construct a covering of a 2× n rectangle by putting the left end of a pair of horizontal dominoes at the
positions corresponding to the primed numbers, and fill up the remaining space with vertical dominoes.
Figure 3 illustrates the correspondence for 2× 4 rectangles.

Figure 3

5. Trace generating functions
Let us now return to Theorem 3. We would like to count tableaux in which an entry l in position (i, j)

is assigned the weight xli−j . The trace of a plane partition (see Stanley [64]) is the sum of the elements on
the main diagonal, and generating functions with these weights are called trace generating functions because
they generalize enumeration by trace.

To apply Theorem 3 to this situation, we use the relabeling function f for which fi(l) is the ordered
pair (i, l), which is assigned the weight xli. If we take d =∞ in (3.3) then h(a, b, c) = Hf (a, b, c, d) is easy to
evaluate:

h(a, b, c) =
(xaxa+1 · · ·xc−1)b

(1− xaxa+1 · · ·xc−1)(1− xa+1xa+2 · · ·xc−1) · · · (1− xc−1)
, (5.1)

for a < c, with h(a, b, a) = 1 and h(a, b, c) = 0 for a > c. Then Theorem 3 yields

Theorem 9. Let λ and µ be partitions with k parts, and let the integers bi satisfy bi+1 ≥ bi. Then the
trace generating function for tableaux T of shape λ− µ with every part in row i at least bi is

|h(µi − i+ 1, bi, λj − j + 1)|k1 ,

where h(a, b, c) is defined by (5.1).

If µ is empty and the bi are all zero (or equivalently by column-strictness, bi = i − 1) then there is an
explicit product expression for the trace generating function, due to Gansner [22], using the Hillman-Grassl
correspondence [31]. To describe Gansner’s result, we define the hook lengths and contents of a diagram.
The hook length of a square in a diagram is the number of squares to its right plus the number of squares
below it plus one. Thus the hook length of square (i, j) is λi + λ′j − i− j + 1. The content of square (i, j) is
j − i. The hook lengths and contents of the diagram for the partition (431) are as follows:

6 4 3 1

4 2 1

1

Hook lengths

0 1 2 3

−1 0 1

−2

Contents

Since every entry of row i of a tableau of shape λ with nonnegative parts is at least i− 1, we can factor
out

k∏
i=1

(x−ix−i+1 · · ·x−i+λi−1)i−1

from the trace generating function for tableaux to leave the trace generating function for reverse plane
partitions (with no strictness condition). Gansner [22, p. 132, Theorem 4.1] showed that the trace generating
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function for reverse plane partitions of shape λ with nonnegative entries may be described as follows: Let
us define the hook of a square s in the diagram of a partition to be the set of all squares to the right of s
or below s, together with s. The content c(s) of square (i, j) is j − i. Let X(s) be the product

∏
xc(t) over

all squares t in the hook of s. Then Gansner’s result is that the trace generating function for reverse plane
partitions of shape λ with nonnegative entries is∏

s

1
1−X(s)

where the product is over all squares s in the diagram of λ.
Another proof of Gansner’s theorem has been given by Eğecioğlu and Remmel [19] by evaluating a

determinant related to those we shall discuss in Section ?

6. Hook Schur functions.
Let us consider fillings of the diagram of λ − µ using two copies of the integers, 1, 2, 3, . . . , and

1′, 2′, 3′, . . .. We order them by 1 < 1′ < 2 < 2′ · · · . We consider tableaux with these entries such that the
unprimed numbers are column-strict and the primed numbers are row-strict. More precisely, for each i we
allow at most one i in each column and at most one i′ in each row. For simplicity we do not restrict the
parts in each row. Let us weight each i by xi and each i′ by yi, i = 1, 2, . . . , and weight a tableau by the
product of the weights of its entries. Let us write s∗λ/µ for the sum of the weights of these tableaux.

Now let hn be the coefficient of un in
∏∞
i=1(1 + yiu)

/∏∞
i=1(1− xiu), so

h∗n =
n∑
k=0

hk(x)en−k(y).

Theorem 10.

s∗λ/µ =
∣∣∣h∗λi−µj+j−i∣∣∣k

1
.

We give here only a sketch of a proof. In the next section we shall consider a generalization (which is
less clear geometrically).

We work with paths with vertical and horizontal steps as before, but we also allow diagonal steps, and
we label them as in Figure 4. One can check that applying Corollary 2 to this digraph yields Theorem 10.

Figure 4

A result equivalent to Theorem 10 was first proved by Stanley [63] using the Littlewood-Richardson
rule. The proof sketched above was given by Remmel [52] in a less general form. A related result was given
by Thomas [68,Theorem 3].

The symmetric functions s∗λ are sometimes called hook Schur functions because a tableau counted by
s∗λ(x1, . . . , xm; y1, . . . , yn) lies inside the “hook” { (i, j) | 1 ≤ i ≤ m or 1 ≤ j ≤ n }. They have also been
studied by Berele and Regev [7] and Worley [74].

7. Generalized Schur functions
The t-tableaux of Section 3 and the hook tableaux of Section 4 are both examples of arrays in which

one relation holds between elements which are adjacent in a row and another holds between elements which
are adjacent in a column. We may ask if there are similar determinant formulas corresponding to other
relations.

Let R be an arbitrary relation on a set X. For each i ∈ X, let xi be an indeterminate. Let

hRn =
∑

xi1xi2 · · ·xin ,
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where the sum is over all i1 R i2 R · · · R in.
We define the R-Schur function sRλ/µ by

sRλ/µ =
∣∣∣hRλi−µj+j−i∣∣∣ .

We now ask, under what conditions is it true that sRλ/µ counts arrays (pij) of shape λ− µ with entries in X
which satisfy

pij R pi,j+1 (7.1)
and

pij S pi+1,j . (7.2)

for some relation S? By looking at sR(11) and sR(21) we infer that the only reasonable choice for S is the relation
R̄= { (a, b) | b 6R a }, where 6R is the negation of R. (The examples mentioned above are of this form.) So we
define an R-tableau to be an array (pij) which satisfies (7.1) and (7.2) with S =R̄.

It is not hard to show that if λ − µ is a skew-hook then the sRλ/µ counts R-tableaux for any relation
R. This is because counting R-tableaux of a skew-hook shape is the same as counting sequences i1 . . . in
in which { j | ij 6R ij+1 } is a specified subset of {1, . . . , n − 1}. The desired formula is easily obtained by
inclusion-exclusion. (See MacMahon [44, Vol. 1, pp. 197–202] for the special case in which R is “≤” and
Stanley [66] for some other special cases. The general case can be found in Gessel [23] and Goulden and
Jackson [27, p. 254].)

However, for other shapes we need additional conditions on R. Take, for example, X = {1, 2, 3} and
R= {(1, 2), (2, 3)}. Then we have (writing hi for hRi ) h0 = 1, h1 = x1 + x2 + x3, h2 = x1x2 + x2x3,
h3 = x1x2x3, and

sR22 =
∣∣∣∣h2 h3

h1 h2

∣∣∣∣ = x2
1x

2
2 + x2

2x
2
3 + x1x

2
2x3 − x2

1x2x3 − x1x2x
2
3,

which has negative terms, although the positive terms do correspond to the three R-tableaux

1 2

1 2

1 2

2 3

2 3

2 3

There is a simple characterization of relations with this property. We prove the generalization of
Corollary for these relations by restating the proof of Theorem 1 in terms of tableaux.

A relation R on a set X is called semitransitive (see, e.g., [12] or [21]) if it satisfies the following condition:

(∗) For all a, b, c, d in X, if a R b R c then a R d or d R c.

It is easily verified that the following property is equivalent to (∗), and although less symmetrical, is
more convenient for our proof:

For all a, b, c, d in X, if a R̄ b R c R d then a R d.

It is easy to show that R is semitransitive if and only if R̄ is.

Theorem 11. If R is semitransitive then sRλ/µ counts R-tableaux of shape λ− µ.

Proof. We work with arrays (aij) defined for i = 1, . . . , k; µi < j ≤ mi for some numbers mi, and
satisfying aij R ai,j+1. A failure of the first kind of such an array is a position (i, j) such that aij 6R̄ ai+1,j ,
i.e., ai+1,j R aij . A failure of the second kind is a position (i, j) with aij undefined (but i ≥ 1) and ai+1,j
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defined. It is clear that an array with no failures is an R-tableau. As in the proof of Theorem 1, we shall
define an involution ε on the set of arrays with failures that has the right properties.

There is one technical point that we should mention first. In the involution used in the proof of Theorem
1, two nonadjacent paths are sometimes switched. It is more convenient to use a different choice of intersecting
paths as the model for this proof; otherwise we would have to consider failures between nonadjacent rows,
which correspond to intersections of nonadjacent paths. As a first attempt, we might try choosing the least
i such that paths i and i+ 1 intersect; however, this does not give an involution. For example, in Figure 5a

Figure 5

paths 2 and 3 would switch at x, giving Figure 5b, but the “involution” applied to Figure 5b would try to
switch the new paths 1 and 2 at y. Thus a slightly more complicated choice is necessary.

We can modify the involution as follows: call an intersection point x of paths i and j early if x is the
first intersection point on both paths. Then it is easy to see that for the rectangular grid digraphs we are
using, the set of early intersections does not change when a switch is made at an early intersection, every
early intersection involves two consecutive paths (as long as the paths are numbered correctly), and every
nondisjoint k-path has at least one early intersection. (The last statement does not hold in general for
arbitrary acyclic digraphs.) Thus we can choose our switching point to be the ‘least’ early intersection.

Returning to the proof of Theorem 11, we define an early failure to be a failure (i, j) such that there
are no failures (i− 1, j′) with j′ < j, no failures (i, j′) with j′ < j, and no failures (i+ 1, j′) with j′ ≤ j. It
is clear that every array with a failure has an early failure. We define the earliest failure of an array to be
the early failure (i, j) with i as small as possible. For example, if R is “≤” then in the array

1 4

2 3

3 3

4 4

4

(4, 1) is an early failure, (2, 2) is the earliest failure, and (1, 2) is a failure which is not early.
To construct the involution ε on arrays with failures, we perform a switching operation on rows i and

i+ 1, where i is the row of the earliest failure. The switching is described most easily by (noncommutative!)
diagrams for several cases: First suppose we have a failure of the first kind between b and e where C and G
are the rest of the rows:

· · · a
R−→ b −→ CyR̄ xR

· · · d
R−→ e

R−→ f −→ G

We change this to
· · · a

R−→ f −→ GyR̄ xR
· · · d

R−→ e
R−→ b −→ C

which also has a failure of the first kind in the same place. (Here we have a R f since a R̄ d R e R f .) This
case also applies if a or a and d are absent. If f is absent, we switch the same way, and we obtain a failure
of the second kind.

Similarly, if the earliest failure is of the second kind, above e in

· · · ayR̄
· · · d

R−→ e
R−→ f −→ G
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we change it to
· · · a

R−→ f −→ GyR̄ xR
· · · d

R−→ e

which has a failure of the first kind. As before, we have a R f since a R̄ d R e R f . Also a or a and d may
be absent with no change. If f is absent, we get a failure of the second kind.

It is not hard to verify that ε preserves the position of the earliest failure and thus is an involution. We
leave it to the reader to verify that this involution cancels the unwanted terms in sRλ/µ.

We can give a strong converse of Theorem 11: although semitransitivity is sufficient for sRλ/µ to count

R-tableaux of any shape, it is necessary for sR(22) to count R-tableaux of shape (22). The following theorem

shows that sR(22) expresses exactly the degree to which R fails to be semitransitive. We omit the proof, which
is straightforward.

Theorem 12. For any relation R the sum of the weights of the R-tableaux of shape (22) is

s(22) +
∑

xaxbxcxd,

where the sum is over all (a, b, c, d) satisfying a R b R c, a 6R d, and d 6R c.

Theorem 12 could easily be generalized to include part restrictions on the rows, and in fact we could
have a different set of elements on each diagonal and a different relation between each pair of consecutive
diagonals, as long as they satisfy the appropriate generalizations of (∗).

What can we say about the structure of semitransitive relations? Probably the most surprising fact
is that they can all be built up in a simple way from semitransitive relations which are either reflexive or
irreflexive. (A relation R on X is reflexive if a R a for all a in X and R is irreflexive if a 6R a for all a in X.)

If R is a semitransitive relation on X, it is clear that R is reflexive if and only if R̄ is irreflexive. We
note also that since a R b R c implies a R a or a R c, if R is irreflexive, then it is transitive, and is thus a
strict partial order. Such a relation is called a partial semiorder [21]. (Thus the condition of being a partial
semiorder is stronger than the condition of being a partial order!)

If (R1, X1) and (R2, X2) are two semitransitive relations, where X1∩X2 = ∅, we define the sum R1⊕R2

of R1 and R2 to be the relation on X1 ∪X2 given by R1 ∪ R2 ∪ (X1 ×X2). It is easily checked that if R1

and R2 are semitransitive, then R1 ⊕ R2 is semitransitive. For example, a total order is a sum of reflexive
points and a strict (i.e., irreflexive) total order is a sum of irreflexive points.

A semitransitive relation on X is irreducible if it is not the sum of semitransitive relations on nonempty
subsets of X.

Theorem 13. An irreducible semitransitive relation is either reflexive or irreflexive.

Proof. Suppose that (R,X) is neither reflexive nor irreflexive. Then there exist a, b in X with a R a
and b 6R b. Since a R a R a, either a R b or b R a. Without loss of generality, we may assume a R b. Let

X2 = {x ∈ X | x 6R x and a R x } ∪ {x ∈ X | for some y ∈ X, y 6R y and a R y R x }

Let X1 = X − X2. We shall show that R is the sum of its restrictions to X1 and X2. We first note the
following easily proved facts about semitransitive relations
(i) If u R u then for all v in X, u R v or v R u.
(ii) If u R v and v R u then u R u.
(iii) If u R v R w and either u 6R u or w 6R w then u R w.

It is clear that a ∈ X1 and b ∈ X2, so X1 and X2 are nonempty. Now suppose that p ∈ X1 and q ∈ X2.
To prove the theorem we need only show that p R q and q 6R p.
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First we prove that p R q. We consider two cases. In the first case, we assume that q 6R q and a R q.
We know that either a R p or p R a, by (i). If p R a then p R a R q, so by (iii), p R q. If a R p then we have
p R p, since otherwise p would be in X2. Thus by (i), if p 6R q then q R p, so a R q R p, and thus p ∈ X2, a
contradiction.

In the second case, there exists y with y 6R y and a R y R q. Then by the first case, we have p R y, so
p R y R q. Then by (iii), p R q unless p R p. Thus by (i), if p 6R q then q R p and we have q R p R y, so
q R y by (iii). Thus by (ii), y R y, a contradiction.

It remains to prove that q 6R p. But if q R p then since we have just shown that p R q, it follows from
(ii) that q R q. Thus there must exist some y with y 6R y and a R y R q. Therefore we have y R q R p so by
(iii), y R p. But since y ∈ X2, it follows from what we have already proved that p R y, so by (ii) we have
y R y, a contradiction.

It follows that all semitransitive relations can be constructed from partial semiorders.
The following construction shows that partial semiorders are easy to find: Start with a strict total order

< on X. Let f be function from X to X such that for all a, b ∈ X, f(a) ≥ a and a ≤ b implies f(a) ≤ f(b).
Then let

R = { (a, b) | f(a) < b }. (7.3)

To see that R is semitransitive, suppose a R b R c but a 6R d. Then we have f(a) < b, f(b) < c, and
f(a) ≥ d. Then d ≤ f(a) < b, so f(d) ≤ f(b) < c, and thus d R c. The condition f(a) ≥ a impies that R
is irreflexive. It is interesting to note that the number of such functions on an n-element set is the Catalan
number Cn. The relation on the integers given by a R b iff a ≤ b− t, where t ≥ 1, comes from the function
f(x) = x+ t− 1.

Not every partial semiorder is of this form; a counterexample is a disjoint union of two 2-element chains.
To see this, note that if R is defined by (7.3), then the sets Rx = { y | x R y } over all x ∈ X are totally
ordered by inclusion.

Edrei [18] (see also Karlin [34, p.412]) proved the following theorem, which was conjectured by Schoen-

berg (see [61]): Let rn be real numbers, with rn = 0 for n < 0. Then all determinants srλ/µ =
∣∣rλi−µj+j−i∣∣k1

for all k are nonnegative if and only if

∞∑
n=0

rnu
n = Cuλeγu

M∏
i=1

(1 + αiu)
/ N∏
i=1

(1− βiu),

where αi, βi, and γ are positive real numbers, C ≥ 0,
∑

(αi + βi) < ∞, and M and N may be infinite. It
follows that for any finite partial semiorder R, if we set PR(u) =

∑
i h

R
i u

i, then for any nonnegative values
of the xi, PR(u) is a polynomial in u with negative roots.

The hook Schur functions give a strengthening of the easy half of Edrei’s theorem: if the αi, βi, and γ
are indeterminates, then srλ/µ has nonnegative coefficients as a polynomial in these variables. (The parameter
γ can be accounted for via the homomorphism θ of Section 3, by introducing a third set of labels, each of
which can appear at most once.)

There is another way of looking at R-Schur functions: we can interpret them as evaluations of ordinary
Schur functions. For the moment, let us think of hn, n ≥ 1, as indeterminates, with h0 = 1, and define the
skew Schur functions sλ/µ as polynomials in the hn. Then sRλ/µ is the image of sλ/µ under the substitution

hn 7→ hRn . It follows that any polynomial identity among the sλ/µ remains true when sRλ/µ is substituted for
sλ/µ. For example, we have the formulas

(h1)n =
∑
λ

fλsλ,

over all partitions λ of n, where fλ is the number of standard Young tableaux of shape λ, and

sµsν =
∑
ν

cλµνsλ,
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where the integers cλµν are given by the Littlewood-Richardson rule [43, p. 68]. It is reasonable to expect
that these formulas can be explained combinatorially by analogs of the Robinson-Schensted correspondence
[56, 59] and the jeu de taquin of Schützenberger [62]. This has been done in the special case of the hook
Schur functions by Remmel [52] and Worley [74].

8. Stanley’s formula
Much of the theory of plane partitions is devoted to counting plane partitions or tableaux by the

sum of their entries. To accomplish this we set xi = qi in the formulas of Section 3. First we evaluate
hn(xa, xa+1, . . . , xb) with xi = qi. Using the well-known expansions of (1 − z)(1 − zq) · · · (1 − zqn) and its
reciprocal [1, p. 19] we have

∞∑
n=0

hn(qa, qa+1, . . . , qb)zn =
1

(1− zqa) · · · (1− zqb)

=
1

(zqa)b−a+1
=
∞∑
j=0

zjqaj
[
b− a+ j

j

]
and

∞∑
n=0

en(qa, qa+1, , . . . , qb)zn = (1 + zqa) · · · (1 + zqb)

=
b−a∏
i=0

(1 + qizqa) =
∑
j

zjq(
j
2)+aj

[
b− a+ 1

j

]
.

So

hn(qa, . . . , qb) = qan
[
b− a+ n

n

]
and

en(qa, . . . , qb) = qan+(n2)
[
b− a+ 1

n

]
.

[Kreweras [39, p. 64] gave the determinant |
(yi−y′j+r
i−j+r

)
| for counting r-tuples of paths between two given

paths of heights yi and y′j .]

Applying these formulas to Corollary 4, we obtain

Theorem 14. The generating function for tableaux of shape λ− µ in which parts in row i are at least
ai and at most bi, where ai ≤ ai+1 and bi ≤ bi+1, is∣∣hλi−µj+j−i(qaj , . . . , qbi)∣∣k1 =

∣∣∣∣qaj(λi−µj+j−i)[bi − aj + λi − µj + j − i
λi − µj + j − i

]∣∣∣∣k
1

(8.1)

and the corresponding generating function for row-strict tableaux, where ai+1 − ai ≥ µi+1 − µi − 1 and
bi+1 − bi ≥ λi+1 − λi − 1, is ∣∣∣∣qEij[ bi − aj + 1

λi − µj + j − i

]∣∣∣∣k
1

,

where

Eij =
(
λi − µj + j − i

2

)
+ aj(λi − µj + j − i). (8.2)

Analogous formulas for column-strict plane partitions are easily obtained from Theorem 14, since re-
placing each entry with its negative changes a tableau to a column-strict plane partition. Then replacing ai

and bi with their negatives and q by q−1 in Theorem 14, and using the identity
[
n

k

]
q−1

= q−k(n−k)

[
n

k

]
q

, we

obtain:
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Theorem 15. The generating function for column-strict plane partitions of shape λ−µ in which parts
in row i are at most ai and at least bi, where ai ≥ ai+1 and bi ≥ bi+1 is∣∣∣∣qbi(λi−µj+j−i)[aj − bi + λi − µj + j − i

λi − µj + j − i

]∣∣∣∣k
1

. (8.3)

We can easily modify formula (8.3) to count (not necessarily column-strict) plane partitions: if we add i
to every part in row i of a column-strict plane partition counted by (8.3), we increase the sum by

∑
i(λi−µi)

and we obtain a plane partition of shape λ− µ in which parts in row i are at most ai + i and at least bi + i.
Setting Ai = ai + i and Bi = bi + i, we obtain:

Theorem 16. The generating function for plane partitions of shape λ− µ in which parts in row i are
at most Ai and at least Bi, where Ai ≥ Ai+1 − 1 and Bi ≥ Bi+1 − 1 is

qΣii(λi−µi)
∣∣∣∣q(Bi−i)(λi−µj+j−i)

[
Aj −Bi + λi − µj
λi − µj + j − i

]∣∣∣∣k
1

.

There are many determinants of q-binomial coefficients which have explicit formulas as quotients. Some
of these are very difficult to evaluate [2–4, 6, 46, 47, 49?]. In this section we give an easy evaluation of a
determinant by induction, which yields a result of Stanley counting tableaux of a given shape with a given
maximum part size. (For other work on evaluation of determinants of matrices of binomial and q-binomial
coefficients, see [10,29, 45, 48, and 69]. In the next section we use a simple summation formula to evaluate
a determinant and give two (?) applications which seem to be new.

Let us consider the problem of counting tableaux of shape λ, with parts 0, 1, · · · , b−1. By formula (8.1)
the generating function for these tableaux is∣∣∣∣[b+ λi + j − i

λi + j − i

]∣∣∣∣k
1

.

However, in such a tableau the smallest part in row i must be at least i−1 (since µ = 0) so this determinant
is also equal to∣∣∣∣q(j−1)(λi+j−i)

[
b− 1− (j − 1) + λi + j − i

λi + j − i

]∣∣∣∣k
1

=
∣∣∣∣q(j−1)(λi+j−i)

[
b+ λi − i
λi + j − i

]∣∣∣∣k
1

, (8.4)

and this determinant turns out to be easier to evaluate.
We now define the hook lengths and contents of a diagram. The hook length of a square in a diagram

is the number of squares to its right plus the number of squares below it plus one. Thus the hook length of
square (i, j) is λi + λ′j − i− j + 1. The content of square (i, j) is j − i. The hook lengths and contents of the
diagram for the partition (431) are as follows:

6 4 3 1

4 2 1

1

Hook lengths

0 1 2 3

−1 0 1

−2

Contents

We write h(x) and c(x) for the hook length and content of x, and we set H(λ) =
∏
x(1 − qh(x)) and

Ca(x) =
∏
x(1− qa+c(x)), where the product is over all squares x of the diagram of λ.
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Theorem 17. (Stanley [65]) The generating function for tableaux of shape λ with parts 0, 1, · · · , b− 1
is qeCb(λ)/H(λ), where e =

∑k
i=1(i− 1)λi.

Proof. We evaluate the determinant (8.4) by induction. First note that if λk = 0 (8.4) reduces to the
formula for λ1, λ2, · · · , λk−1.

Now first suppose that b is greater than k, the number of parts of λ. Note that

Cb(λ) = Cb−1(λ)
(1− qb+λ1−1)(1− qb+λ2−2) · · · (1− qb+λk−k)

(1− qb−1)(1− qb−2) · · · (1− qb−k)
.

Then by induction the determinant is∣∣∣∣q(j−1)(λi+j−i)
[
b+ λi − i
b− j

]∣∣∣∣ =
∣∣∣∣q(j−1)(λi+j−i) 1− qb+λi−i

1− qb−j
[
b+ λi − i− 1
b− j − 1

]∣∣∣∣
=

k∏
i=1

(1− qb+λi−i)
(1− qb−i) · qeCb−1(λ)

H(λ)
= qe

Cb(λ)
H(λ)

.

If b = k and λk 6= 0 then the first column must be 0, 1, 2, . . . , b − 1. So the tableau is determined by
the entries in columns 2, 3, . . . , λ1, which may constitute an arbitrary tableau of shape λ̃ = (λ1 − 1, λ2 −
1, · · · , λk − 1). Thus by induction the generating function is

q0+1+···+(k−1)q(λ2−1)+2(λ3−1)+···+(k−1)(λk−1)Cb(λ̃)
H(λ̃)

= qe
Cb(λ̃)
H(λ̃)

.

Now H(λ) = H(λ̃) · (1 − qλ1+k−1)(1 − qλ2+k−2) · · · (1 − qλk) and Cb(λ) = Cb(λ̃) ·
(1− qb+λ1−1) · · · (1− qb+λk−k) and thus when b = k,

Cb(λ̃)
H(λ̃)

=
Ck(λ̃)
H(λ̃)

=
Ck(λ)
H(λ)

=
Cb(λ)
H(λ)

.

9. Some quotient formulas
Next we consider some determinants of binomial coefficients which can be evaluated explicitly. For

simplicity, we consider here only the case q = 1.
We use the notation (a)n to denote a(a+ 1) · · · (a+ n− 1).

Lemma 18. ∣∣∣∣ 1
(αi)j

∣∣∣∣n
0

=

∏
0≤i<j≤n

(αi − αj)

n∏
i=0

(αi)n

Proof. The formula is equivalent to∣∣∣∣ (αi)n(ai)j

∣∣∣∣n
0

=
∏

0≤i<j≤n
(αi − αj)

The left side is
|(αi + j)(αi + j + 1) · · · (αi + n− 1)|n0 .

Since the entries in column j of this determinant are the values of a polynomial of degree n− j evaluated at
the points αi, elementary column operations reduce this to a Vandermonde determinant.
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Lemma 19.

∣∣∣∣ (αi − βj)j(αi)j

∣∣∣∣n
0

=

n∏
i=0

(βi)i
∏

0≤i<j≤n
(αj − αi)

n∏
i=0

(αi)n

.

Proof. Let A be the matrix
(

1
(αi)j

)
and let B be the matrix

(
(βj)i(−j)i

i!

)
. Then the (i, j) entry of

C = AB is
n∑
l=0

1
(αi)l

(βj)l(−j)l
l!

=
(αi − βj)j

(αi)j

by Vandermonde’s theorem [5, p. 3]. Thus |C| = |A||B|. Since B is upper triangular,

|B| =
n∏
j=0

(βj)j(−j)j
j!

= (−1)(
n
2)

n∏
j=0

(βj)j

and the result follows from 18

We now give two applications of Lemma 19. First let us evaluate the determinant
∣∣∣(β−αi+jαi+j−1

)∣∣∣n
0
. Since

(αi − β − j)j = (−1)j(β − αi + 1)j , we have

(
β − αi + j

αi + j − 1

)
=
(
β − αi
αi − 1

)
(β − αi + 1)j

(αi)j

= (−1)j
(β − αi)!

(β − 2αi + 1)! (αi − 1)!
(αi − β − j)j

(αi)j
.

Thus ∣∣∣∣(β − αi + j

αi + j − 1

)∣∣∣∣n
0

= (−1)(
n+1

2 )
n∏
i=0

(β − αi)! (β + i)i
(β − 2αi + 1)! (αi − 1)! (αi)n

∏
0≤i<j≤n

(αj − αi)

=
n∏
i=0

(β − αi)! (β + i)i
(β − 2αi + 1)! (αi − 1)! (αi)n

∏
0≤i<j≤n

(αi − αj)

=
n∏
i=0

(β − αi)! (β + i)i
(β − 2αi + 1)! (αi + n− 1)!

∏
0≤i<j≤n

(αi − αj). (9.1)

This determinant can clearly be interpreted as counting certain tableaux. The value of the determinant
can be simplified and expressed in a form very similar to Stanley’s hook length-content formula. The hook
lengths are the same, but the contents are different. If (i, j) is a square of the diagram of λ we define d(i, j)
as follows:

d(i, j) =
{−(λi + j − 2i+ 1) if i ≤ j;

λ′j + i− 2j if i > j.

These numbers can be described as follows: if x is a diagonal square, −d(x) is one more than the number of
squares to the right of x, and as we move right from a diagonal square d decreases by 1 for each square. If
x is a subdiagonal square, d(x) is 2 more than the number of squares below x, and as we move down from a
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subdiagonal square, d increases by 1 for each square. Here are the values of d(i, j) for the partition (44331):

−5 −6 −7 −8 −9

5 −4 −5 −6 −7

6 4 −1

7 5 2

8 6

In this section we let H(λ) be the product of the hook lengths of λ. We will need the following lemma (see
Macdonald [43, p. 9]):

Lemma 20. For any partition λ,

∏
1≤i<j≤k

(λi − λj − i+ j)

k∏
i=1

(λi − i+ k)!

=
1

H(λ)
.

Theorem 21. The number of tableaux of shape λ with positive integer parts, in which the largest part
in row i is at most r − 2λi + 2i− 1 is

1
H(λ)

∏
x∈λ

(
r + d(x)

)
.

Proof. In (9.1) we set αi = λi+1 − i+ 1, k = n+ 1, and β = r+ 1. When i and j are replaced by i− 1
and j − 1, the determinant becomes ∣∣∣∣(r − λi + i+ j − 2

λi − i+ j

)∣∣∣∣k
1

,

and the combinatorial interpretation follows from Theorem 14. The value of the determinant is

k∏
i=1

(r − λi + i− 1)! (r + i)i−1

(r − 2λi + 2i− 2)! (λi − i+ k)!

∏
1≤i<j≤k

(λi − λj + j − i)

=
1

H(λ)

k∏
i=1

(r + 2i− 2)(r + 2i− 3) · · · (r + 2i− 2λi − 1)
(r + i− 1)(r + i− 2) · · · (r + i− λi)

=
1

H(λ)

k∏
i=1

λi∏
j=1

(r + 2i− 2j)(r + 2i− 2j − 1)
(r + i− j)

=
1

H(λ)

∏
(i,j)∈λ

(r + 2i− 2j)(r + 2i− 2j − 1)
(r + i− j)

We break the product into two factors.
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First we have

∏
(i,j)∈λ
i≤j

(r + 2i− 2j)(r + 2i− 2j − 1)
(r + i− j) =

k∏
i=1

λi−i∏
l=0

(r − 2l)(r − 2l − 1)
(r − l)

=
k∏
i=1

2λi−2i+1∏
m=0

(r −m)

λi−i∏
n=0

(r − n)

=
k∏
i=1

2λi−2i+1∏
m=λi−i+1

(r −m).

With the substitution m = j + λi − 2i+ 1, this becomes

k∏
i=1

λi∏
j=i

(r − j − λi + 2i− 1) =
∏
x∈λ+

(
r + d(x)

)
.

Next we have, with k′ = λ1

∏
(i,j)∈λ
i>j

(r + 2i− 2j)(r + 2i− 2j − 1)
(r + i− j) =

k′∏
j=1

λ′j−j∏
l=1

(r + 2l − 1)(r + 2l)
(r + l)

=
k′∏
j=1

2λ′j−2j∏
m=1

(r +m)

λ′j−j∏
n=1

(r + n)

=
k′∏
j=1

2λ′j−2j∏
m=λ′

j
−j+1

(r +m).

With the substitution m = i+ λ′j − 2j,

k′∏
j=1

λ′j∏
i=j+1

(r + i+ λ′j − 2j) =
∏
x∈λ−

(
r + d(x)

)
,

completing the proof.

Another determinant we can evaluate using Lemma 19 is
∣∣Ci+αj ∣∣n0 , where Cn is the Catalan number

defined by

Cn =
1

n+ 1

(
2n
n

)
= 22n (1/2)n

(2)n
.

Since

Ci+αj = 22i+2αj
(1/2)i+αj
(2)i+αj

= 22i+2αj
(1/2)αj (1/2 + αj)i

(2)αj (2 + αj)i
,
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the determinant is equal to

2n(n+1)+2Σjαj

∏
j(1/2)αj∏
j(2)αj

∣∣∣∣ (1/2 + αj)i
(2 + αj)i

∣∣∣∣n
0

Now by the lemma ∣∣∣∣ (1/2 + αj)i
(2 + αj)i

∣∣∣∣n
0

=
∏n
i=0(3/2)i∏n

j=0(αj + 2)n

∏
0≤i<j≤n

(αj − αi).

Simplifying, we find that the determinant is

∏
0≤i<j≤n

(αj − αi)
n∏
j=0

(2αj)!
αj ! (αj + n+ 1)!

n∏
i=0

(2i+ 1)!
i!

.

See Viennot [71] for an evaluation of a special case of this determinant, using the qd-algorithm of Padé
approximant theory. See also de Sainte-Catherine and Viennot [14].

We recall that Ci is the number of paths from (0, 0) to (2i, 2i) which never go above (but may touch)
the line x = y.

Now assume that 0 ≤ α0 < α1 < · · · < αn and let the points Pi and Qi be defined by Pi(n − i, n − i)
and Qi = (n+ αi, n+ αi) for i = 0, . . . , n. If we consider the digraph of lattice points with only those steps
that lie below the line x = y, then (P,Q) is nonpermutable. Thus the determinant |Ci+αj |n0 is the number
of disjoint (n+ 1)-paths from P to Q.

These paths may be expressed as tableaux: we consider separately the cases α0 = 0 and α0 6= 0.

First we consider the case α0 = 0. In Figure 6 an example with α0 = 0, α1 = 2, and α2 = 5 is given.
Figure 6

It is clear that path i begins with 2i horizontal steps, and thus we may remove these steps, and associate
what remains with a tableau in the usual way. Thus Figure 6 corresponds to the tableau

1 1 6

2

In general, the tableau will have shape (αn − n, αn−1 − n + 1, . . . , α1 − 1). The requirement that all steps
fall below the main diagonal is equivalent to the condition that pij ≤ 2n + j − i. This condition is implied
by the inequalities for the last elements in each column.

If we make the substitution λi = αn+1−i− (n+ 1− i), (so that αi = λn+1−i + i) for i = 1, . . . , n and set
k = n, then we obtain the following:

Theorem 22. The number of tableaux (pij) of shape λ with nonnegative entries satisfying pij ≤
2k + j − i, or equivalently, pλ′

j
,j ≤ 2k + j − λ′j , is

1
(k + 1)!

k∏
i=1

(λi + k − i+ 1)!
∏

1≤i<j≤k
(λi − λj − i+ j)

k∏
i=1

(2λi + 2k − 2i+ 2)!
(λi + k − i+ 1)! (λi − i+ 2k + 2)!

k∏
i=0

(2i+ 1)!
i!

.
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Next we consider the case α0 6= 0. Figure 7 shows an example with α0 = 2, α1 = 4, α2 = 5. Here path
Figure 7

i begins with 2i+ 1 horizontal steps, which may be removed as before. Figure 7 corresponds to the tableau

0 1

2 2

3

In general, the tableau will have shape (αn − n− 1, αn−1 − n, . . . , α0 − 1) and the restriction on the parts is
pij ≤ 2n + 1 + j − i. Now we make the substitution λi = αn−i+1 − n + i − 2 for i = 1 to n + 1 and we set
k = n+ 1. Then we have the following:

Theorem 23. The number of tableaux (pij) of shape λ, with nonnegative parts satisfying pij ≤ 2k −
1 + j − i, or equivalently, pλ′

j
,j ≤ 2k − 1 + j − λ′j is

∏
1≤i<j≤k

(λi − λj − i+ j)
k∏
i=1

(2λi + 2k − 2i+ 2)!
(λi + k − i+ 1)! (λi + 2k − i+ 1)!

k−1∏
i=0

(2i+ 1)!
i!

.

10. Fibonomial coefficients
We now consider a matrix of binomial coefficients whose characteristic polynomial can be explicitly eval-

uated in terms of polynomials closely related to Gaussian polynomials. The coefficients of the characteristic
polynomial are sums of minors which we may interpret using the theory we have developed. In particular,
we obtain the first known combinatorial interpretation for the Fibonomial coefficients.

Carlitz [9] showed that the characteristic polynomial of the matrix((
i

n− j

))
i,j=0,...,n

is

xn+1 +
n+1∑
r=1

(−1)(
r+1

2 )
{
n+ 1
r

}
F

xn+1−r,

where
{
m
j

}
F

is the Fibonomial coefficient

FmFm−1 · · ·Fm−j+1

F1F2 · · ·Fj
.

Here Fj is the Fibonacci number (F0 = 0, F1 = 1, and Fj = Fj−1 + Fj−2 for j ≥ 2).
First we generalize Carlitz’s result. Let Ψ be the linear transformation on the vector space of polynomials

in x of degree at most n defined by

Ψ(A(x)) = xnA
(
s(1 +

1
x

)
)

for any such polynomial A(x), where s is arbitrary.

Since Ψ(xi) = xnsi(1+x−1)i =
∑n
j=n−i x

j
(

i
n−j
)
si, the matrix of Ψ with respect to the basis {xi}i=0,...,n

is ((
i

n− j

)
si
)
i,j=0,...,n

.
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Now we have

Ψ
(
(1 + ax)k(1 + bx)n−k

)
= (as)k(bs)n−k

(
1 +

1 + as

as
x

)k (
1 +

1 + bs

bs
x

)n−k
.

Thus if (1 + as)/as = a and (1 + bs)/bs = b, i.e.,

a, b =
s±
√
s2 + 4s
2s

then (1 + ax)k(1 + bx)n−k will be an eigenvector for Ψ with eigenvalue (as)k(bs)n−k. As long as s2 + 4s 6= 0
these will be distinct for k = 0, . . . , n, and thus give all the eigenvalues of Ψ.

By continuity, we may remove the restriction on s and we obtain:

Theorem 24. The eigenvalues of the matrix M =
((

i

n− j

)
si
)
i,j=0,...,n

are αkβn−k, k = 0, . . . , n,

where

α, β =
s±
√
s2 + 4s
2

,

and thus the characteristic polynomial of M is

|(xI −M)| =
n∏
k=0

(x− αkβn−k) (10.1)

where I is the identity matrix.

To express the product simply, it is convenient to introduce the homogeneous Gaussian polynomials,
defined by [

m

j

]
p,q

=
(pm − qm)(pm−1 − qm−1) · · · (pm−j+1 − qm−j+1)

(p− q)(p2 − q2) · · · (pj − qj) .

These are related to the ordinary Gaussian polynomials by[
m

j

]
p,q

= qmj−j
2
[
m

j

]
p/q

.

Then the following formula is equivalent to a form of the q-binomial theorem:

n∏
k=0

(x+ pkqn−k) =
n+1∑
k=0

xn+1−k(pq)(
k
2)
[
n+ 1
k

]
p,q

.

Thus by (10.1), we have

|(xI −M)| =
n+1∑
k=0

xn+1−k(−1)(
k+1

2 )s(
k
2)
[
n+ 1
k

]
α,β

, (10.2)

since αβ = −s.
Now let Gn = (αn − βn)/(α− β). The following facts about Gn are easily verified:

G0 = 0, G1 = 1, and Gn = s(Gn−1 +Gn−2)
∞∑
n=0

Gnu
n =

u

1− s(u+ u2)

Gn =
n∑

i=dn/2e
si
(

i

n− i

)
.
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Note that for s = 1, Gn reduces to Fn. Let us define
{
m
j

}
to be

[
m
j

]
α,β

, so that{
m

j

}
=
GmGm−1 · · ·Gm−j+1

G1G2 · · ·Gj
.

We note that from the easily proved formula Gm+n = GmGn+1 + sGm−1Gn we obtain the recurrence{
m

j

}
= Gm−j+1

{
m− 1
j − 1

}
+ sGj−1

{
m− 1
j

}
(10.3)

We now turn to the combinatorial interpretation. We know that the coefficient of xn+1−k in |(xI −M)|
is (−1)k times the sum of all the k × k principal minors of M , i.e., the minors obtained by choosing k rows
and the same k columns from M . Such a minor is a determinant∣∣∣∣( ri

n− rj

)
sri
∣∣∣∣k
1

. (10.4)

To get a determinant in the form we can interpret, we reverse the order of the columns in (10.4); then (10.4)

is equal to (−1)(
k
2)sΣri times the determinant∣∣∣∣( ri

n− rk+1−j

)∣∣∣∣k
1

(10.5)

The determinant (10.5) is easily interpreted by our theory. It is in fact a binomial determinant , as studied
in Gessel and Viennot [25], and it has the following interpretation: define points Pi and Qi by Pi = (0,−i)
and Qi = (−n + i,−n + i). For any subset R = {r1 < r2 < · · · < rk} of {0, 1, . . . , n}, let N(R) be the

number of nonintersecting k-paths from (Pr1 , · · · , Prk) to (Qrk , · · · , Qr1). Then
∣∣∣( ri
n−rk+1−j

)∣∣∣ = N(R).

Theorem 25. For any subset R of {0, 1, . . . , n} let ‖R‖ =
∑
i∈R i and let N(R) be defined as above.

Then ∑
R

s‖R‖N(R) = s(
k
2)
{
n+ 1
k

}
,

where the sum is over all k-subsets R of {0, 1, . . . , n}.

Several questions related to Theorem 15 present themselves. First it would be nice to have a more natural
interpretation than the one we have given. Second, is there a combinatorial interpretation to the recurrence
(10.3)? R. Stanley has asked if there is a binomial poset associated with the Fibonomial coefficients; i.e., a
ranked poset such that for all x and y in the poset if x < y and r(y)− r(x) = n then there are exactly

{
n
k

}
F

points z with x < z < y and r(z)− r(x) = k. Our work constructs the right number of objects, but it is not
clear how to partially order them to obtain such a binomial poset.

11. Jacobi’s theorem
There is a theorem of Jacobi [32; 41, p. 153–156] which relates the minors of a matrix to minors of

the inverse matrix. It may be stated in the following form: Let M be an invertible matrix with rows and
columns indexed by some set I = {a, a+ 1, · · · , a+ n}. (In our applications, a is 0 or 1.) Let L = M−1. We
shall call the matrix M∗ =

(
(−1)i+jLij

)
the sign-inverse of M .

If A and B are subsets of I of the same size, let M [A|B] denote the minor of M corresponding to the
rows in A and the columns in B. Jacobi’s theorem asserts that if N is the sign-inverse of M then

M [A|B] = |M | ·N [I −B|I −A] (11.1).

In many cases, especially when M is a triangular matrix with 1’s on the diagonal, (11.1) can be inter-
preted combinatorially. See, for example, Gessel and Viennot [25, Section 4].

One of the simplest examples is the case in which M is the matrix (hi−j). It is easily verified that
M∗ = (ei−j). Then Jacobi’s theorem gives the expression of a skew Schur function in terms of the ei.

The following theorem gives a pair of sign-inverse matrices to which we can apply Jacobi’s theorem.
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Lemma 26. Let a0, a1, . . . and b0, b1, . . . be arbitrary, and define pi and qi by

∞∑
i=0

piu
i =

( ∞∑
i=0

(−1)iaiui
)−1

and
∞∑
i=0

qiu
i =

( ∞∑
i=0

(−1)ibiui
)/( ∞∑

i=0

(−1)iaiui
)

Then

(i) The matrices (aj−i) and (pj−i) are sign-inverse (where ak = pk = 0 for k < 0),

(ii) The matrices

U =


1 b0 b1 · · · bn
0 a0 a1 · · · an
0 0 a0 · · · an−1

...
...

...
...

0 0 0 · · · a0


and

V =


1 q0 q1 · · · qn
0 p0 p1 · · · pn
0 0 p0 · · · pn−1

...
...

...
...

0 0 0 · · · p0


are sign-inverse.

The proof is straightforward.
Now let us take ai = him+r for fixed m and r, where 0 ≤ r < m, and bi = him+s. Then

∞∑
i=0

piu
i =

( ∞∑
i=0

him+ru
i

)−1

and

∞∑
i=0

qiu
i =

∞∑
i=0

(−1)ihim+su
i

∞∑
i=0

(−1)ihim+ru
i

.

(The variable u is actually redundant in these formulas.) The significance of the restriction 0 ≤ r < m is
that it implies that the sum could as well start at −∞ instead of at 0.[why?]

Before we apply Jacobi’s theorem we need to relate complements of sets to conjugate partitions. By
reasoning as in Macdonald [43, p. 15; see also (1.7), p. 3] it follows from Jacobi’s theorem that if λ and µ
are two partitions with at most s parts and largest part at most t, where s + t = w, and if M and N are
sign-inverse matrices with rows and columns indexed 0, 1, . . . , w, then we have

M [{λi + s− i}1≤i≤s|{µj + s− j}1≤j≤s] = |M | ·N [{s− 1 + i− µ′i}1≤i≤t|{s− 1 + j − λ′j}1≤j≤t]

Now since sλ/µ =
∣∣hλi−µj+j−i∣∣ we have for the symmetric functions pi

|pλi−µj−i+j | = h−(s+t)
r |h(λ′

i
−µ′

j
−i+j)m+r|1≤i,j≤t = h−(s+t)

r sλ̃/µ̃,
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where
λ̃i = mλ′i − (m− 1)i+ r + C

µ̃i = mµ′i − (m− 1)i+ C

where C is large enough to make λ̃ and µ̃ nonnegative.
The simplest case is that in which λ = (n), µ = ∅. So λ′i = 1 for i = 1, . . . , n. We may take s = 1, t = n.

We get
λ̃i = m− (m− 1)i+ r + C, i = 1, . . . , n

µ̃i = −(m− 1)i+ C, i = 1, . . . , n
.

We may take C = (m− 1)n, and we obtain

λ̃i = (m− 1)(n− i) +m+ r

µ̃i = (m− 1)(n− i).
(11.2)

Thus λ̃i − µ̃i = m+ r and λ̃i+1 − µ̃i = r + 1.

Figure 8

Applying the homomorphism θ of Section 2 and setting u = 1 we get( ∞∑
n=0

(−1)n
xmn+r

(mn+ r)! (xr/r!)n−1

)−1

(11.3)

as the exponential generating function for Young tableaux of shape λ̃ − µ̃ given by (11.2). For example, if
m = 2 and r = 1 (11.3) reduces to x3/2/ sin(x3/2). Since

x

sinx
=
∞∑
n=0

dn
x2n

(2n)!
,

where dn is related to the Bernoulli number by dn = (−1)n+1(22n − 2)B2n, it follows that

x3/2

sin(x3/2)
=
∞∑
n=0

dn
(3n)!
(2n)!

x2n

(2n)!

and thus
(3n)!
(2n)!

dn is the number of Young tableaux of shape (n + 2, n + 1, . . . , 3) − (n − 1, n − 2, . . . , 0).

This result may be compared with a combinatorial interpretation of 1 · 3 · · · (2n+ 1)d2n given in Gessel and
Viennot [25, p. 315].

12. Salié numbers and Faulhaber numbers
In view of Jacobi’s theorem, it is natural to ask when matrices of binomial coefficients to which our

theory applies have inverses which can be expressed in some kind of explicit form. In this section we discuss
a closely related pair of such matrices. The entries of their inverses are numbers which have arisen in other
contexts, but are not well known. One of them, according to Edwards [17], was studied by Faulhaber [20]
in the seventeenth century in connection with formulas for sums of powers. The other was apparently first
considered by Salié [58] in 1963 in connection with the number-theoretic properties of the coefficients of
cosh z/ cos z. (See also Hammersley [ ] and Dumont and Zeng [16].)

Both arrays of numbers can be defined in three ways: as entries of the inverse of a matrix of binomial
coefficients, by generating functions, and by formulas for sums of powers. We shall start with the generating
functions.
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We define the Salié numbers s(n, k) by

∞∑
n,k=0

s(n, k)tk
x2n

(2n)!
=

cosh
√

1 + 4tx2
cosh x

2

(12.1)

and we define the Faulhaber number f(n, k) by

∞∑
n,k=0

f(n, k)tk
x2n+1

(2n+ 1)!
=

cosh
√

1 + 4tx2 − cosh x
2

t sinh x
2

. (12.2)

It is easily seen that s(n, k) = f(n, k) = 0 for k > n. As we shall see later, |s(n, k)| = (−1)n−ks(n, k)
and |f(n, k)| = (−1)n−kf(n, k). The first few values of these numbers are as follows (zeros are omitted):

s(n, k) : n\k 0 1 2 3 4
0 1
1 1
2 −1 1
3 3 −3 1
4 −17 17 −6 1
5 155 −155 55 −10 1
6 −2073 2073 −736 135 −15 1
7 38227 −38227 13573 −2492 280 −21 1

f(n, k) : n\k 0 1 2 3 4 5 6 7
0 1
1 1/2
2 −1/6 1/3
3 1/6 −1/3 1/4
4 −3/10 3/5 −1/2 1/5
5 5/6 −5/3 17/12 −2/3 1/6
6 −691/210 691/105 −118/21 41/15 −5/6 1/7
7 35/2 −35 359/12 −44/3 14/3 −1 1/8

Next we prove the sums of powers formulas. Let Sr(m) =
∑m
i=0 i

r, with 00 = 1, so that S0(m) = m+ 1.

Theorem 27.

S2n+1(m) =
1
2

n∑
k=0

f(n, k)
(
m(m+ 1)

)k+1
. (12.3)

Proof. We have

∞∑
r=0

Sr(m)
xr

r!
= 1 + ex + · · ·+ emx =

e(m+1)x − 1
ex − 1

=
e(m+ 1

2 )x − e−x/2
ex/2 − e−x/2 =

sinh(m+ 1
2 )x+ cosh(m+ 1

2 )x+ sinh x
2 − cosh x

2

2 sinh x
2

.

Thus
∞∑
n=0

S2n+1(m)
x2n+1

(2n+ 1)!
=

cosh(m+ 1
2 )x− cosh x

2

2 sinh x
2

.
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Now set t = m(m+ 1), so
√

1 + 4t = 2m+ 1. Then
∞∑
n=0

S2n+1(m)
x2n+1

(2n+ 1)!
=

cosh
√

1 + 4tx2 − cosh x
2

2 sinh x
2

=
t

2

∞∑
n,k=0

f(n, k)tk
x2n+1

(2n+ 1)!

=
1
2

∞∑
n=0

x2n+1

(2n+ 1)!

n∑
k=0

f(n, k)
(
m(m+ 1)

)k+1
,

and the result follows by equating coefficients of
x2n+1

(2n+ 1)!
.

Formula (12.3) was first studied by Faulhaber [20] in the seventeenth century. Faulhaber’s work is
described in Edwards [17] Schneider [60], and Knuth . Formula (12.3) was rediscovered by Jacobi [33], who
gave the recurrence (in our notation)

2n(2n+ 1)f(n− 1, k − 2) = 2k(2k − 1)f(n, k − 1) + k(k + 1)f(n, k).

[Give analogous formula for Salié numbers, from Concrete Math. 7.52] As far as we know, the generating
function (12.2) is new.

There is a companion formula which we state for completeness, although we will not use it (see Edwards
[17]):

S2n(m) = (m+
1
2

)
n∑
k=0

f̄(n, k)
(
m(m+ 1)

)k
,

for n > 0, where

1 +
∞∑
n=1

x2n

(2n)!

n∑
k=0

f̄(n, k)tk =
sinh
√

1 + 4tx2√
1 + 4t sinh x

2

,

and moreover,

f̄(n, k) =
k + 1
2n+ 1

f(n, k).

Next we consider the analogous formula for Salié numbers. Let

Tr(m) =
1
2

m∑
i=−m

(−1)m−iir,

so if r is odd Tr(m) = 0, and for n > 0,

T2n(m) =
m∑
i=1

(−1)m−ii2n.

Theorem 28.

T2n(m) =
1
2

n∑
k=0

s(n, k)
(
m(m+ 1)

)k
.

Proof. We have

1
2

∞∑
r=0

(
m∑

i=−m
(−1)m−iir

)
xr

r!
=

1
2

m∑
i=−m

(−1)m−ieix =
ex(m+ 1

2 ) + e−x(m+ 1
2 )

2(ex/2 + e−x/2)

=
cosh(m+ 1

2 )x
2 cosh x

2

=
cosh

√
1 + 4tx2

2 cosh x
2

=
1
2

∞∑
n,k=0

s(n, k)
x2n

(2n)!
tk
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and the theorem follows by equating coefficients of
x2n

(2n)!
.

There is a companion formula for
∑2n+1
i=1 (−1)m−ii2n+1 that we leave to the reader.

Next we relate the Faulhaber and Salié numbers to inverses of matrices of binomial coefficients.

Theorem 29. The inverse of the matrix

((
i+ 1

2i− 2j + 1

))
i,j=0,···m

is the matrix
(
f(i, j)

)
i,j=0,···m, and

the inverse of the matrix

((
i

2i− 2j

))
i,j=0,···m

is the matrix
(
s(i, j)

)
i,j=0,···m.

Proof. We have (
i(i+ 1)

)r+1 −
(
(i− 1)i

)r+1 = 2
∑
l odd

(
r + 1
l

)
i2r+2−l.

Summing on i from 0 to m we obtain

(
m(m+ 1)

)r+1 = 2
∑
l odd

(
r + 1
l

)
S2r+2−l(m) = 2

r∑
j=0

(
r + 1

2r − 2j + 1

)
S2j+1(m)

and the first assertion follows from Theorem 27.
Similarly, we have (

i(i+ 1)
)r +

(
(i− 1)i

)r = 2
∑
l even

(
r

l

)
i2r−l.

Multiplying by (−1)m−i, summing from i = −m to m, and dividing by 2, we obtain

(
m(m+ 1)

)r = 2
∑
l even

(
r

l

)
T2r−l(m) = 2

r∑
j=0

(
r

2r − 2j

)
T2j(m)

and the second assertion follows from Theorem 28.
The proof just given follows Edwards [17] (who considered only the Faulhaber numbers).

Note that since the matrix
(

i

2i− 2j

)
is lower triangular with 1’s on the diagonal, its inverse has integer

entries, so the Salié numbers are integers. We can now explain Salié’s interest in these numbers [58]. (See
also Comtet [13, pp. 86–87].) Salié was studying the numbers S2n defined by

coshx
cosx

=
∞∑
n=0

S2n
x2n

(2n)!
.

In equation (12.1) if we replace x by 2ix, where i =
√
−1, and set t = −1

2 we obtain

coshx
cosx

=
∞∑
n=0

22n(−1)n
x2n

(2n)!

n∑
k=0

s(n, k)(−1
2

)k

and thus

S2n = 22n(−1)n
n∑
k=0

s(n, k)
(
−1

2

)k
=

n∑
k=0

s(n, k)(−1)n−k22n−k.

Thus S2n is divisible by 2n, as shown by Salié. (Salié used the notation c
(i)
i−j for our s(i, j).)
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It follows from equation (12.4) below that s(n, n) = 1, s(n, n − 1) = −
(
n

2

)
, and s(n, n − 2) =(

n− 1
2

)(
n

2

)
−
(
n

4

)
, so that we have in fact,

2−nS2n ≡ 1 + 2
(
n

2

)
+ 4
(
n− 1

2

)(
n

2

)
− 4
(
n

4

)
(mod 8).

Salié obtained a congruence (mod 16) for the numbers 2−nS2n by a different method. See also Carlitz [8].
Next we consider the combinatorial interpretation of the Salié numbers and Faulhaber numbers. First

we note the following lemma, which follows easily from the formula for the inverse of a matrix.

Lemma 30. Let
(
Aij
)
i,j=0,...,m

be an invertible lower triangular matrix, and let (Bij) = (Aij)−1. Then

for 0 ≤ k ≤ n ≤ m, we have

Bn,k =
(−1)n−k

Ak,kAk+1,k+1 · · ·An,n
|Ak+i+1,k+j |i,j=0,...,n−k−1 .

Since the Salié numbers are entries of
((

i

2i− 2j

))−1

, we have

s(n, k) = (−1)n−k
∣∣∣∣( k + i+ 1

2i− 2j + 2

)∣∣∣∣n−k−1

0

(12.4)

and since the Faulhaber numbers are entries of
((

i+ 1
2i− 2j + 1

))−1

, we have

f(n, k) = (−1)n−k
k!

(n+ 1)!

∣∣∣∣( k + i+ 2
2i− 2j + 3

)∣∣∣∣n−k−1

0

. (12.5)

Although we can give a combinatorial interpretation of these determinants using Theorem 14, the
simplest interpretations are most easily derived directly from the paths.

For the Salié numbers, we define the points Pm = (2m,−2m) and Qm = (2m,−m). Then it fol-
lows from (12.4) that (−1)n−ks(n, k) is the number of disjoint (n − k)-paths from (Pk, Pk+1, . . . , Pn−1) to
(Qk+1, Qk+2, . . . , Qn). Figure 9 illustrates a 3-path counted by |s(5, 2)|. We note that it is immediate from

Figure 9

this combinatorial interpretation that |s(n, 1)| = |s(n, 2)|. To represent these (n − k)-paths most simply as
tableaux, we assign to the horizontal segment from (i,−j) to (i + 1,−j) the label i − j + 1 and make the
labels on each path into a row of the tableau, shifting as usual. Thus the 3-path of Figure 9 becomes the
tableau

3 5

2 4

1 2

(12.6)

Converting the conditions on the paths into conditions on the tableau, we have

Theorem 31. |s(n, k)| = (−1)n−ks(n, k) is the number of row-strict tableaux of shape (n− k + 1, n−
k, . . . , 2)− (n− k − 1, n− k − 2, . . . , 0) with positive integer entries in which the largest entry in row i is at
most n+ 1− i.

We may convert the tableau into a sequence of integers by reading each row from left to right, starting
with the last row, so that (12.6) becomes 1 2 2 4 3 5. Checking the conditions on this sequence, we find that we
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are counting sequences a1a2 · · · a2n−2k of positive integers satisfying a2i−1 < a2i, a2i ≥ a2i+1, and a2i ≤ k+ i
for each i. This combinatorial interpretation is closely related to the combinatorial interpretation of the
Genocchi numbers given by Dumont and Viennot [15]. See also Viennot [70].

Next we move on the Faulhaber numbers. Let Pm = (2m,−2m) as before, and let Rm = (2m+ 1,−m).

Then (−1)n−k
(n+ 1)!
k!

f(n, k) is the number of nonintersecting (n − k)-paths from (Pk, Pk+1, . . . , Pn−1) to

(Rk+1, Rk+2, . . . , Rn). As in the case of the Salié numbers, we represent these (n− k)-paths as tableaux,

Figure 10

so the 4-path of Figure 10 becomes

1 3 5

3 4 5

1 3 4

1 2 3

(12.7)

and we have

Theorem 32. (−1)n−k
(n+ 1)!
k!

f(n, k) is the number of row-strict tableaux of shape (n−k+ 2, n−k+

1, . . . , 2)− (n− k − 1, n− k − 2, . . . , 0) with positive integer entries in which the largest entry in row i is at
most n+ 2− i.

We can also represent these tableaux as sequences, so for example, (12.7) becomes 1 2 3 1 3 4 3 4 5 1 3 5,
and we have

Theorem 33. (−1)n−k
(n+ 1)!
k!

f(n, k) is the number of sequences a1a2 · · · a3n−3k of positive integers

satisfying a3i−2 < a3i−1 < a3i, a3i−1 ≥ a3i+1, a3i ≥ a3i+2, and a3i ≤ k + i+ 1 for all i.

We now derive some explicit formulas for the Salié numbers in terms of the Genocchi numbers, and for
the Faulhaber numbers in terms of the Bernoulli numbers.

We first consider the Salié numbers. We shall need the formula [55, Ex. 2, pp. 153–154](
1−
√

1 + 4t
2

)i
=
∞∑
k=i

i

2k − i

(
2k − i
k

)
(−t)k. (12.8)

Now

cosh
√

1 + 4t
x

2
= cosh

((
1−
√

1 + 4t
2

)
x− x

2

)
= cosh

(
1−
√

1 + 4t
2

)
x cosh

x

2
− sinh

(
1−
√

1 + 4t
2

)
x sinh

x

2
so

cosh
√

1 + 4tx2
cosh x

2

=
∞∑
j=0

x2j

(2j)!

∞∑
k=2j

2j
2k − 2j

(
2k − 2j

k

)
(−t)k

− tanh
x

2

∞∑
j=0

x2j+1

(2j + 1)!

∞∑
k=2j+1

2j + 1
2k − 2j − 1

(
2k − 2j − 1

k

)
(−t)k.

The Genocchi numbers Gn are defined [13, p. 49] by

2x
ex + 1

= x(1− tanh
x

2
) =

∞∑
n=1

Gn
xn

n!
.
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(Thus G2n+1 = 0 for n > 0 and G2n = 2(1− 22nB2n), where B2n is the Bernoulli number.) Then we have

∞∑
n=0

s(n, k)
x2n

(2n)!
= (−1)k

(bk/2c∑
j=0

2j
2k − 2j

(
2k − 2j

k

)
x2j

(2j)!

− x tanh
x

2

∞∑
j=0

1
2k − 2j − 1

(
2k − 2j − 1

k

)
x2j

(2j)!

)

and thus

s(n, k) = (−1)k

 2n
2k − 2n

(
2k − 2n

k

)
+
b(k−1)/2c∑

j=0

1
2k − 2j − 1

(
2k − 2j − 1

k

)(
2n
2j

)
G2n−2j

 .

Since
(

2k−2n
k

)
= 0 for n > k/2, we have

s(n, k) = (−1)k
b(k−1)/2c∑

j=0

1
2k − 2j − 1

(
2k − 2j − 1

k

)(
2n
2j

)
G2n−2j (12.9)

for n > k/2, and since s(n, k) = 0 for n < k, we also obtain the identity for Genocchi numbers

b(k−1)/2c∑
j=0

1
2k − 2j − 1

(
2k − 2j − 1

k

)(
2n
2j

)
G2n−2j = − 2n

2k − 2n

(
2k − 2n

k

)
, n < k.

The first few instances of (12.9) are

s(n, 1) = −G2n, n ≥ 1

s(n, 2) = G2n, n ≥ 2

s(n, 3) = −2G2n −
1
3

(
2n
2

)
G2n−2, n ≥ 2

s(n, 4) = 5G2n +
(

2n
2

)
G2n−2, n ≥ 3

Similarly, for the Faulhaber numbers we have

cosh
√

1 + 4tx2 − cosh x
2

t sinh x
2

= t−1 coth
x

2

(
cosh

(
1−
√

1 + 4t
2

)
x− 1

)
− t−1 sinh

(
1−
√

1 + 4t
2

)
x

= x coth
x

2

∞∑
j=1

x2j−1

(2j)!

∞∑
k=2j

2j
2k − 2j

(
2k − 2j

k

)
(−1)ktk−1

−
∞∑
j=0

x2j+1

(2j + 1)!

∞∑
k=2j+1

2j + 1
2k − 2j − 1

(
2k − 2j − 1

k

)
(−1)ktk−1

= x coth
x

2

∞∑
j=0

x2j+1

(2j + 1)!

∞∑
k=2j+1

1
2k − 2j

(
2k − 2j
k + 1

)
(−1)k+1tk

+
∞∑
j=0

x2j+1

(2j + 1)!

∞∑
k=2j

2j + 1
2k − 2j + 1

(
2k − 2j + 1

k + 1

)
(−1)ktk.
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Now since

x coth
x

2
= 2

∞∑
n=0

B2n
x2n

(2n)!
,

where Bm is the Bernoulli number, we have

f(n, k) = (−1)k+1

b(k−1)/2c∑
j=0

1
k − j

(
2k − 2j
k + 1

)(
2n+ 1
2j + 1

)
B2n−2j

+ (−1)k
2n+ 1

2k − 2n+ 1

(
2k − 2n+ 1

k + 1

)
.

As before, this yields the formula

f(n, k) = (−1)k+1

b(k−1)/2c∑
j=0

1
k − j

(
2k − 2j
k + 1

)(
2n+ 1
2j + 1

)
B2n−2j (12.10)

for n > k/2, and the identity for Bernoulli numbers

b(k−1)/2c∑
j=0

1
k − j

(
2k − 2j
k + 1

)(
2n+ 1
2j + 1

)
B2n−2j =

2n+ 1
2k − 2n+ 1

(
2k − 2n+ 1

k + 1

)
, n < k.

The first few instances of (12.10) are as follows:

f(n, 1) = (2n+ 1)B2n, n ≥ 1

f(n, 2) = −2(2n+ 1)B2n, n ≥ 2

f(n, 3) = 5(2n+ 1)B2n +
1
2

(
2n+ 1

3

)
B2n−2, n ≥ 2

.

It follows in particular that we have given a combinatorial interpretation to the product

(−1)n−1(n+ 1)! (2n+ 1)B2n.
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16. D. Dumont and J. Zeng, Polynômes d’Euler et fractions coninues de Stieltjes- Rogers, preprint, 1996.
17. A. W. F. Edwards, A quick route to sums of powers, Amer. Math. Monthly 93 (1986), 451–455
18. A. Edrei, Proof of a conjecture of Schoenberg on the generating function of a totally positive sequence,

Canad. J. Math. 5 (1953), 86–94.
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exposé no. 11 (1980/1981), Université Bordeaux I.
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