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396 P. Pokarowskiand sparse linear systems induced by nearly completely decomposable MCs.In this case we generalize the known algorithms for approximating a sta-tionary distribution to other characteristics of MCs and to nonlinear per-turbations.The last two sections are devoted to the study of Markov chain MonteCarlo algorithms (MCMC). In Section 4 we bound errors of a general classof MCMC methods for estimating integrals. In Section 5 we characterizeasymptotic correctness of MCMC algorithms for �nding a global minimum.Due to space constraints, proofs have been omitted. They can be foundin [Po 1] and will be published elsewhere.Acknowledgements. The author is greatly indebted to his thesis su-pervisor Prof. Lesªaw Gajek for many helpful suggestions. The author alsowishes to express his thanks to Prof. Ryszard Zieli«ski for active inter-est in the publication of this work. Special thanks are due to Mrs. AlicjaKossakowska-Kwiecie« for typing this paper.1. Directed forests and Markov chains1.1. Preliminaries. Let S be a given nonempty �nite set and E � S�S.For simplicity we assume that S = f1; : : : ; sg. The (directed) graph with thestate set S and the edge set E is, by de�nition, the pair g := (S;E). A pairg1 := (S1; E1) is called a subgraph of g if S1 � S and E1 � E \ (S1� S1). Asubgraph g1 is called spanning if S1 = S. A path from a state i to a state jis, by de�nition, any �nite sequence i0 = i, i1; : : : ; ik = j such that im 2 Sand (im; im+1) 2 E for m = 1; : : : ; k� 1. By a cycle we mean a path from ito i.A spanning subgraph without cycles in which from every state there isat most one outgoing edge is called a spanning forest, f = (S;Ef). The setR � S of states of the forest f from which there is no outgoing edge is calledthe root of f . It is easily seen that the root of f is nonempty and for everystate i 2 S nR there is only one path from i to R. We denote by F (R) theset of all forests in g with root R. For i 62 R and j 2 R, we denote by Fij(R)the subset of F (R) consisting of all forests with a path from i to j.Let A = (aij)i;j2S be an n � n complex matrix. The weighted graphinduced byA is, by de�nition, the matrixA together with the graph g(A) :=(S;E), where E = f(i; j) 2 S � S : aij 6= 0g. The (multiplicative) weight ofa forest f = (S;Ef) in g(A) is de�ned to bew(f) := Y(i;j)2Ef(�aij)(we set w((S; ;)) := 1). The weight of a set F of forests in g(A) is de�ned



Directed forests 397to be w(F ) := Xf2F w(f) (w(;) := 0):If F = F (R) for some R � S, we write w(R) instead of w(F (R)), becausethe set R determines the set of all forests with root R. Set w(i) := w(fig),wjk(R; k) := w[Fjk(R[fkg)] and wkl(R) := w[Fkl(R)] for i 2 S, j; k 2 SnR,l 2 R.A matrix L := (lij)si;j=1, lij 2 C , is said to be a laplacian matrix iflii = �Pj: j 6=i lij for i = 1; : : : ; s. To explain the name we note that suchmatrices appear in solving partial di�erential equations with the Laplaceoperator (see for example [Mo]). Symmetric laplacian matrices are knownin combinatorics (e.g. [CvDoSa], [Mo]). Their eigenvalues are used to boundsome combinatorial parameters. Laplacian matrices have also been studiedin the theory of electrical networks under the name of \admittance matrices"or \Kirchho� matrices" (see [Che], [Mo]).Let (
;F ;Pr) be a probability space and X = (Xt)t�0 a Markov chain(MC) de�ned on (
;F) and with state space S. Markov chains are usuallyintroduced by a transition probability matrix P = (pij)i;j2S (when timeis discrete) or by a generator Q = (qij)i;j2S (when time is continuous).Let I denote the s � s identity matrix. It is easily seen that the matri-ces L(P) = I � P and L(Q) = �Q are laplacian matrices induced by Pand Q.Many facts we consider here are the same for the discrete and continuouscase (see [Io], [KeSn] for more details about MCs). For that reason and forsimplicity of notation we will introduce MCs by Markov chain laplacianmatrices (MC laplacian matrices), i.e. laplacian matrices whose o�-diagonalelements are nonnegative.1.2. Directed forest expansions for cofactors of a laplacian matrix. ForU;W � S and an s � s matrix A, denote by A(U jW ) the submatrix ofA obtained by deletion of the rows and columns indexed by U and Wrespectively. The cofactor of A(U jW ) is, by de�nition, the numberCA(U jW ) := (�1)Pi2U i+Pj2W j detA(U jW ):For simplicity of notation we write Aij instead of A(fig j fjg) and A(U)instead of A(U jU). Let es and 0s denote the column vectors in which eachcomponent is 1 and 0 respectively.The following lemma allows one to represent many characteristics of MCsin the form of directed forest expansions, i.e. rational functions of weightsof sets of forests in g(L). Without loss of generality we can assume that thestates are numbered so that R = fs� jRj+1; : : : ; sg, where jRj denotes thecardinality of R.



398 P. PokarowskiLemma 1.1. Let L be an s � s laplacian matrix , R � S and i; j 62 R.Then:(1) ([FieSe]) detL(R) = w(R);(2) CL(R [ fjg jR[ fig) = wij(R; j).In the proof of the above lemma we use a general version of the \MatrixTree Theorem" [Che, prob. 4.16, Cha]. A simple consequence of Lemma 1.1is the following.Lemma 1.2. Let L be an s�s laplacian matrix and R � S. Suppose thatw(R) 6= 0. Then L(R)�1 = �wij(R; j)w(R) �i;j2SnR:From these lemmas we obtain the following corollaries.Corollary 1.1. Let A = (aij)s�1i;j=1 be an (s� 1)� (s� 1) matrix andL := �A l0 : : : 0� ; where l = � � s�1Xj=1 a1j ; : : : ;� s�1Xj=1 as�1;j�T :Moreover for i; j = 1; : : : ; s� 1 and R � S let F (s), Fij(s; j) and F (S nR)be the relevant sets of forests in the graph g(L). Then:(1) ([BoMa]) detA = w(F (s));(2) if w(F (s)) 6= 0, thenA�1 = �w(Fij(s; j))w(F (s)) �s�1i;j=1:Corollary 1.2. Let A = (aij)s�1i;j=1, x = (x1; : : : ; xs�1)T , b = (b1; : : :: : : ; bs�1)T , x;b 2 C s�1 . SetL := � A l�bT b� ; wherel := �� s�1Xj=1 a1j ; : : : ;� s�1Xj=1 as�1;j�T and b := s�1Xj=1 bj:Moreover let F (i), i 2 S, be the relevant sets of forests in the graph g(L).Then:(1) the system ATx = b has exactly one solution if and only if w(F (s))6= 0;(2) if w(F (s)) 6= 0, then xi = w(F (i))=w(F (s)).1.3. Directed forest expansions for characteristics of Markov chains.Many characteristics of MCs are solutions of the systems of linear equa-



Directed forests 399tions(1:1) L(R)x = bor(1:2) LT (R)x = b;where b is a nonnegative (s� jRj)-vector. From Lemma 1.2 or from Corol-laries 1.1 and 1.2 we can easily obtain directed forest expansions for thesecharacteristics. We give simple examples.By a stationary distribution of an MC induced by a laplacian matrixL we mean a nonnegative, normalized vector � = (�1; : : : ; �s)T which is asolution of the system(1:3) �TL = 0Ts :To solve (1.3) it is su�cient to solve the system(1:4) LT11a1 = �(l12; : : : ; l1s)T ;and then to normalize the vector aT := (1; aT1 ). Obviously (1.4) is an ex-ample of (1.2).A nonempty subset M of the state set S is called a closed set in thegraph g if there are no states i 2M , j 2 S nM so that (i; j) 2 E. A closedclass in g is, by de�nition, any closed set in g which is minimal for the orderinduced by inclusion. It is known that in every graph there is at least oneclosed class. It is clear that w(f) > 0 in the graph g(L) if L is an MClaplacian matrix. Moreover if MC has one closed class then there is at leastone state i 2 S such that w(i) > 0.Theorem 1.1 (Markov Chain Tree Theorem). If an MC has one closedclass , then �i = w(i)Pj2S w(j) for i 2 S:The history of discovery of Theorem 1.1 remains mysterious. Aldous[Al] wrote that it is \the most often rediscovered result in probability the-ory". Kohler and Vollmerhaus [KoVo] called it the \diagram method" andattributed to Hill [Hi]. The Markov Chain Tree Theorem was proved inde-pendently by Freidlin and Wentzell [FreWe 1] and Shubert [Sh]. Our proofusing the Matrix Tree Theorem seems to be new.For R � S, ! 2 
, A 2 F , i; j 62 R, k 2 R set:� �R(!) := infft � 0 : Xt(!) 2 Rg, the hitting time of the set R,� Pri(A) := Pr(A jX0 = i),� EiY := T
 Y (!) Pri(d!) for every measurable function Y : 
 ! R,� �ij(R) = Ei[P0�t<�R 1(Xt = j)], the mean number of visits in j beforeabsorption by R,



400 P. Pokarowski� mi(R) := Ei�R, the mean hitting time of R,� pik(R) := PrifX�R(!)(!) = kg, the probability distribution in thehitting time of R.The last three characteristics may be computed by solving systems (1.1).For example, the vectorm(R) = (mi(R))i2SnR is the solution of the systemL(R)m(R) = e:Theorem 1.2. Let L be an MC laplacian matrix such that there existsa forest with root R in the graph g(L). Then for i; j 2 S nR and k 2 R,�ij(R) = wij(R; j)w(R) ;(1) pik(R) = wik(R)w(R) ;(2) mi(R) = Pj 62R wij(R; j)w(R) :(3) Parts (2) and (3) of Theorem 1.2 were proved by Freidlin and Wentzellin the case of discrete time [FreWen 1{2]. Part (1) seems to be new.Theorems 1.1 and 1.2 provide directed forest expansions for the mostknown characteristics of MCs. In the same way one can \expand" otherparameters, e.g. the limiting matrix, the fundamental matrix or higher mo-ments of the hitting time (see [Po 1]). The next application of directed forestexpansions is in bounding eigenvalues of an MC laplacian matrix and, whatis the same, of a transition probability matrix or a generator.Let 0 = �1; �2; : : : ; �s be the eigenvalues of an MC laplacian matrix L.Suppose that they are all real (this assumption is satis�ed for the interestingreversible MCs|see Section 4) and numbered in increasing order: �1 = 0 ��2 � : : :� �s. SetF k := [R�S; jRj=k F (R) for k = 0; : : : ; s:Obviously w(F 0) = 0 and w(F s) = 1.Theorem 1.3. Let L be an MC laplacian matrix with one closed classwhich has only real eigenvalues. Then for k = 2; : : : ; s,�s� 1k � 2��1w(F k�1)w(F k) � �k � �s� 1k � 1�w(F k�1)w(F k) :In the paper [Po2] there are related bounds between uncoupling measuresand eigenvalues of a general MC Laplacian matrix.2. Direct methods for systems of linear equations related toMarkov chains. The directed forest expansions given in the previous sec-



Directed forests 401tion can be used to bounding the roundo� error of direct methods whichsolve (1.1) or (1.2). This is interesting in some applications where accuratecomputations are needed, for example in models of transmission of high-de�nition television signals (see [HeRe], [O'C] for more details). To analysethe error of the algorithms we will consider perturbations of an MC lapla-cian matrix L and a nonnegative vector b caused by representation andcomputing in oating-point arithmetic with unit roundo� error ".For a given k 2 N, 0 < "1 < 1, and functions A;B : (0; "1) ! R; thenotation A(") = hkiB(") means that(1� ")k � A(")B(") � (1� ")�k for " 2 (0; "1)(cf. Stewart [St], p. 407).A family fL(") : " 2 (0; "1)g of MC laplacian s� s matrices is said to bea relatively perturbed Markov chain (RPMC) induced by an MC laplacianmatrix L = (lij)i;j2S if for every i; j 2 S with i 6= j,�lij(") = h1ilij:A family fb(") : " 2 (0; "1)g of nonnegative u-vectors is called a relativelyperturbed nonnegative vector (RPNV) induced by a nonnegative vector b =(bi)ui=1 if for every i = 1; : : : ; u,bi(") = h1ibi:Note that g(L(")) = g(L) for " 2 (0; "1). It is easy to prove the followingproposition.Proposition 2.1. Let fL(") : " 2 (0; "1)g be an RPMC induced by alaplacian matrix L. Set u := s� jRj. Then:(1) w(f)(") = huiw(f) for f 2 F (R),(2) w(R)(") = huiw(R),where w(f)(") and w(R)(") denote the weight of the forest f and the weightof F (R) in g(L(")).The next theorem says to what extent the entrywise relative error in Land b a�ects the error of solutions of (1.1) and (1.2).Theorem 2.1. Let fL(") : " 2 (0; "1)g be an RPMC induced by L andR � S. Furthermore let fb(") : " 2 (0; "1)g be an RPNV induced by b oforder u := s � jRj. Assume that there exists a forest with root R in g(L).Then:(1) the solutions x = (xi)i2SnR and x(") = (xi("))i2SnR of the systemsL(R)x = b and L(R)(")x(") = b(")



402 P. Pokarowskisatisfy xi(") = h2uixi for i 2 S nR;(2) the solutions x = (xi)i2SnR and x(") = (xi("))i2SnR of the systemsLT (R)x = b and LT (R)(")x(") = b(")satisfy xi(") = h2uixi for i 2 S nR:The proof of the above theorem uses directed forest expansions given inSection 1. In the case of a stationary distribution we are led to the followingcorollary.Corollary 2.1. Let fL(") : " 2 (0; "1)g be an RPMC induced by alaplacian matrix L with one closed class. Then for i 2 S,�i(") = h2(s� 1)i�i;where �i(") are the components of the stationary distribution of an MC withlaplacian matrix L(").O'Cinneide [O'C] obtained slightly weaker bounds without using directedforest expansions. His example indicates that they are nearly best possible.It is known that subtractions appearing in computing a stationary distri-bution from the system (1.4) by Gaussian elimination can sometimes be themajor source of roundo� errors. Grassmann, Taksar and Heyman [GrTaHe]introduced a procedure for this problem which involves no subtractions.This method is commonly referred to as the GTH algorithm. In [Po 1] wegeneralized the GTH algorithm for the systems (1.1) and (1.2). Theorem2.2 below gives a bound on the entrywise relative error for these algorithms.The proof relies on Theorem 2.1.Let x; y be oating point numbers with unit roundo� error ". Moreover,let (x�y) for � 2 f+;�; �; =g; denote the result of the operation \�" inoating-point arithmetic. Suppose that(x�y) = h1i(x�y)and that arithmetic operations do not produce overow or underow.Theorem 2.2. Let the assumptions of Theorem 2.1 hold. Then the vectorx(") = (xi("))i2SnR computed by algorithm 3.1 (3.2) from [Po 1] satis�es therelation xi(") = h (u)ixi; where  (u) = 5u2 + 13u� 16:If additionally  (u)" � 0:1, thenjxi(")� xij � 1:06 (u)xi" for i 2 S nR:It is surprising that the above bounds do not depend on the condi-tion numbers. Theorem 2.2 is a generalization and a sharpened version of



Directed forests 403O'Cinneide's result [O'C, Th. 3], because it deals not only with (1.4) andthere is no assumption that pivots are computed in double precision. In thesame manner we can prove bounds for a given characteristic of MCs.3. Aggregation algorithms for powerly perturbed Markovchains. Markov chains that appear in many applications (e.g. in queue-ing network analysis) are large and sparse. Their laplacian matrices havea nearly block structure. Such chains are referred to as nearly completelydecomposable MCs (NCDMCs) and may be de�ned in the simplest case as afamily fL(") : " 2 (0; "1)g of irreducible MCs indexed by a small parameter" such that L(") = 0BB@L1 0 : : : 00 L2 : : : 0... ... . . . ...0 0 : : : Lm1CCA+ "L0 ;where L1; : : : ;Lm are irreducible MC laplacian matrices of order s1; : : : ; sm,respectively, and L0 is an MC laplacian matrix of order s = s1 + : : :+ sm.For NCDMCs, direct methods can lead to immense �ll-in during thetriangularization part of computation. Furthermore NCDMCs have eigen-values close to 1. This implies that standard iterative algorithms convergevery slowly.The idea of aggregation algorithms is to divide the problem into sub-problems that can be solved nearly independently and then to link the sub-problem solutions together (see Ch. 6 in [Ste-W] for more details).NCDMCs have some generalizations. For example:(1) The linearly perturbed MCsL(") = L0 + "L1;where L0 and L1 are MC laplacian matrices (see [HasHav], [Sch 1{3]).(2) The polynomially or analytically perturbed MCsL(") = NXn=0 "nLn;where every Ln is an MC laplacian matrix, N � 1 (see [HasHav], [RoWi1{2]).Below we de�ne a wider class of perturbed MCs.For given functions A;B : R! R, the notation A(") � B(") means thatlim"!0 A(")B(") = 1:To unify the notation we set A(") � 0 if there exists "1 6= 0 such thatfor every " 2 (�"1; "1), A(") = 0. Furthermore put 00 := 1.



404 P. PokarowskiA family fL(") : " 2 (0; "1)g of MC laplacian s � s matrices is saidto be a powerly perturbed Markov chain (PPMC) if there exist matrices� = (�ij)i;j2S, D = (dij)i;j2S with �ij � 0 and dij 2 R[ f1g such that forevery i; j 2 S with i 6= j, �lij(") � �ij"dij :A family fb(") : " 2 (0; "1)g of nonnegative u-vectors is called a powerlyperturbed nonnegative vector (PPNV) if there exist vectors � = (�i)ui=1 andz = (zi)ui=1 with �i � 0 and zi 2 R[ f1g such that for every i = 1; : : : ; u,bi(") � �i"zi :From now on we identify a PPMC fL(") : " 2 (0; "1)g with the matrices� and D, and a PPNV fb(") : " 2 (0; "1)g with the vectors � and z.Set g�(D) := (S; f(i; j)2 S � S : dij <1g):Let f be a forest and F a set of forests in g�(D), respectively. Let usintroduce some parameters of PPMCs:d(f) := X(i;j)2f dij ; �(f) := Y(i;j)2f �ij ;d(F ) := minf2F d(f); �(F ) := Xf2F :d(f)=d(F ) �(f):Moreover, let w(f)(") and w(F )(") denote the weight of the forest f andthe set F of forests in g(L(")).It is easy to prove the following proposition.Proposition 3.1. Let matrices � and D be a PPMC. Furthermore letf and F be a forest and a set of forests in g�(D). Then:(1) w(f)(") � �(f)"d(f);(2) w(F )(") � �(F )"d(F ).The following theorem describes the asymptotics of solutions of systems(1.1) and (1.2) connected to PPMCs in terms of directed forest expansions.Theorem 3.1. Let matrices � and D be a PPMC and R � S. Moreoverlet vectors � and z of order u := s � jRj be an PPNV. Suppose that thereexists a forest with root R in g�(D). Then:(1) the solution x(") = (xi("))i2SnR of the systemL(R)(")x(") = b(")satis�es xi(") � �i"ai ; for i 2 S nR;



Directed forests 405(2) the solution x(") = (xi("))i2SnR of the systemLT (R)(")x(") = b(")satis�es xi(") � �0i"a0i for i 2 S nR;where the coe�cients �i, ai, �0i and a0i are some constants.In the proof of the above theorem (see [Po 1]) we use Lemma 1.2 andProposition 3.1. The coe�cients �i, ai, �0i and a0i are expressed by explicitbut complicated formulas in terms of the parameters d(F ) and �(F ) forsome sets of forests in g�(D) (see Th. 4.1 in [Po 1] for more details). In thesimplest case of stationary distribution we have the following corollary.Corollary 3.1. Let fL(") : " 2 (0; "1)g be a PPMC induced by matrices� and D such that the graph g�(D) has one closed class. Then�i(") � �i"hi for i 2 S;where hi := d(F (fig))�minj2S d(F (fjg));�i := �(F (fig))� Xj:hj=0 �(F (fjg)):This corollary is similar to the results by Freidlin and Wentzell [FreWe1{2] and Hwang and Sheu ([HwSh 1{2]), where a broader family of perturbedMCs is considered. However, the results there are less conclusive.The formulas for �i, ai, �0i and a0i referred to above are not suitable forcomputation due to exponential complexity. In [Po 1] we give e�ective andaccurate aggregation algorithms for these coe�cients. They require O(s3)comparisons and arithmetic operations (algorithms 4.3{4.6 therein). In theproofs of correctness of the algorithms Theorem 4.1 is applied. Our algo-rithms are generalizations of methods by:� Schweitzer [Sch 1{2], who constructs an algorithm for a stationarydistribution of linearly perturbed, irreducible MCs;� Hassin and Haviv [HasHav], who construct an algorithm for orders ofmagnitude of mean hitting times for linearly perturbed, irreducible MCs;� Desai, Kumar and Kumar [DeKuKu], who construct an algorithm fororders of magnitude of a stationary distribution of special PPMCs.4. Markov chain Monte Carlo algorithms for estimating inte-grals. In this section we consider the problem of approximation of the in-tegral of a function f : S ! R with respect to a probability distribution� = (�i)i2S, under the assumption that �i > 0 for all i 2 S. This problem



406 P. Pokarowskiarises in statistical physics, for example when we estimate global character-istics of the Ising model. The state space S is very large (e.g. 21000) anddirect summation is impossible. We use Monte Carlo algorithms which giveestimates based on a relatively small sample drawn from S. The best generalreference here is Sokal [So]. We are interested in the Markov chain MonteCarlo (MCMC) algorithms which generate discrete time MCs X = (Xt)t�0with stationary distribution �. The sample meanf t(!) := 1t t�1Xj=0 f(Xj(!)); ! 2 
;is the \natural" estimator of �T f := Pi2S fi�i. Here and in the sequel, fiand f(i) have the same meaning. The ergodic theorem leads one to believethat, as the sample size t increases, the error of approximation becomesvanishingly small, becausePrf limt!1 f t = �T fg = 1:To clarify the association with statistical mechanics, we write � in theform of \Gibbs distribution"�i(�) := exp(�ui=�)Pj2S exp(�uj=�) ; i 2 S:with a \potential" function u : S ! R and with \temperature" � . Forsimplicity of notation we write " := exp(�1=�).The best known of MCMC methods, the Metropolis algorithm [Me etal.], is the following. Let� = (�ij)i;j2S be a symmetric irreducible stochasticmatrix.1) Let i be the state of the algorithm at time t, Xt = i. One chooses atrandom a \neighbour" Yt = j of i, according to a probability distribution�i� given by the ith row of �.2) If uj � ui, the state moves to j, Xt+1 := j. Otherwise, the statemoves to j with probability "uj�ui , or stays at i with probability 1�"uj�ui ,Xt+1 := i.The Metropolis algorithm generates the MC with the following transi-tions: Pr"fXt+1 = j jXt = ig = �ij"(uj�ui)_0 for j 6= i:The Gibbs sampler demands a special structure of the state space. LetS = KL, where L is a �nite lattice and K is a �nite set of \levels" withjKj > 1. For a \site" x 2 L and i 2 S, letNx(i) = fj 2 S : j(z) = i(z) for all z 6= x; z 2 Lg



Directed forests 407and N(i) = Sx2LNx(i). For i; j 2 S, putg"x(i; j) = n "uj =(Pk2Nx(i) "uk ) if j 2 Nx(i),0 otherwise.The transition probabilities of the Gibbs sampler (with random updatingscheme) are the following:Pr"fXt+1 = j jXt = ig = 1jLjXx2L g"x(i; j):In most applications we are interested in the behaviour of errors of al-gorithms as " ! 0. To unify the analysis of MCMC methods, we introducethe following de�nition.A family fL(") : " 2 (0; "1)g of MC laplacian s � s matrices is called �powerly perturbed Markov chain (�PPMC) if there exist numbers c0; c1 > 0and a matrix D = (dij)i;j2S with dij 2 R[ f1g such that for all i; j 2 Swith i 6= j, c0"dij � �lij(") � c1"dij ("1 := 0):Note that for the Metropolis algorithm and the Gibbs sampler we have,respectively, dij := � (uj � ui) _ 0 if �ij > 0,1 if �ij = 0;dij := nuj �mink2Nx(i) f(k) if j 2 Nx(i) for some x 2 L,1 otherwise.It is clear that the family of �PPMC is larger than that of PPMC and hassimilar properties. For example,(c0=c1)s�1"hi � �i(") � (c1=c0)s�1"hi :Let vk := d(F k�1)� d(F k); where F k := [R�S; jRj=kF (R)and d(F ) is de�ned in Section 3.Theorem 1.3 allows us to bound eigenvalues of �PPMCs.Theorem 4.1. Let fL(") : " 2 (0; "1)g be a �PPMC which has only realeigenvalues , induced by a matrix D. Then for k = 2; : : : ; s;�s� 1k � 2��1�sk��1kss�k�1cs�k+10 ck�s1 "vk � �k(")and �k(") � �s� 1k � 1�� sk � 1�(k � 1)ss�kck�s0 cs�k+11 "vk :



408 P. PokarowskiThis theorem is similar to the result by Wentzell [We], where a largerfamily of chains than our �PPMC is considered. However, Wentzell's con-clusion is less precise. In that paper, a fact equivalent to Lemma 1.1(1) isannounced without proof. Chiang and Chow [ChiCho] proved that the coef-�cients vk are the same for the Metropolis algorithm and the Gibbs sampler.Ingrassia [In] bounded �2(") for these procedures using the Poincar�e inequal-ity ([Al], [DiSt], [Si]). In comparison with the Ingrassia inequality, Theorem3.1 gives worse constants for �2, but allows us to bound all eigenvalues.To establish bounds on errors of MCMC algorithms, we will use a recentresult of Dinwoodie.An MC with a laplacian matrix L is called reversible if it has a stationarydistribution � = (�i)i2S such that for all i; j 2 S,�ilij = �jlji:Both the Metropolis algorithm and the Gibbs sampler generate reversibleMCs. One can easily prove that the eigenvalues of reversible L are real. Letus number them in increasing order �1 = 0 � �2 � : : : � �s � 2.Lemma 4.1 (Dinwoodie [Din]). Let f : S ! R. Assume that 0 � f � 1.Then for every � 2 [0; (8�2+ 16)�3] and i 2 S,Priff t � �T f � �g � �1 + 9�(�2 + 2)p�i � exp(�t�2�2=2):The following theorem yields bounds for errors of estimation of an in-tegral by a sample mean for �PPMCs. The main advantages of this resultare: large generality and explicit dependence on parameters of �PPMCs, "and t.Theorem 4.2. Let fL(") : " 2 (0; "1)g be a reversible and irreducible�PPMC induced by a matrix D and constants c0, c1. Let �(") be the sta-tionary distribution of a MC laplacian matrix L("). Moreover , let f : S ! R,i 2 S, p > 0 and t 2 N. Setr(f) := maxi2S fi �mini2S fi:Then:(1) for � 2 [0; r(f)(8C1(c0; c1)"v2(D) + 16)�3],Pr"i fjf"t � �T (")f j � �g� C2((c0=c1)s�1"hi(D)) exp[�tC0(c0; c1)"v2(D)�2=(2r2(f))];(2) (E"i jf"t � �T (")f jp)1=p� C3(p; (c0=c1)s�1"hi(D); r(f))=ptC0(c0; c1)"v2(D);where C0; C1; C2; C3 are some constants.



Directed forests 409Theorem 4.2 and the results by Chiang and Chow [ChiCho] mentionedabove support the empirical experience that the Metropolis algorithm andthe Gibbs sampler have asymptotically equivalent behavior for low temper-atures.5. Markov chain Monte Carlo algorithms for �nding a globalminimum. In this section we investigate stochastic algorithms for search-ing a minimum of a function f : S ! R. These algorithms generate MCsand are applied when S is a large set (for example in the area of VLSI de-sign). One of them, the Simulated Annealing (SA) algorithm, generates anonhomogeneous MC with transition probabilitiesPrfXt+1 = j jXt = ig = �ij"(fj�fi)_0t for j 6= i;where ("t)t�0 is a sequence decreasing to 0. We refer to [KiGeVe] and[RomSa] for a general exposition and applications of this method. It is eas-ily seen that SA is a nonhomogeneous version of the Metropolis algorithm.Similarly we can modify the Gibbs sampler.We are interested in asymptotic correctness of minimization algorithms,that is, in convergence of min0�s�t f(Xs) to mini2S f(i) with probabilityone. To unify the analysis we introduce the following de�nitions.Let (Xt)t�0 be a nonhomogeneous Markov chain with discrete time ona �nite state space S. Suppose that for every i 2 S, PrfX0 = ig > 0. Thiscondition is not particularly restrictive but it will allow us to omit sometedious details and concessions.For simplicity of notation, writefA ult.g := f! 2 
 : 9N�08t�N Xt(!) 2 Ag;fA i.o.g := f! 2 
 : 8N�09t�N Xt(!) 2 Ag;fj i.o.g := ffjg i.o.g;for all A � S and j 2 A.A state j 2 S is called recurrent if Prfj i.o.g > 0. Otherwise j is tran-sient.The asymptotically closed class (ACC) of a nonhomogeneous MC is, byde�nition, the subset R of S satisfying the following conditions:(1) fR i.o.g 6= ; a.s.;(2) fR i.o.g = fR ult.g a.s.;(3) R is a set with properties (1) and (2) which is minimal with respectto inclusion.The proposition below expresses the basic features of ACCs.Proposition 5.1. Let R1; : : : ; Rm be all ACCs of a nonhomogeneousMC. Moreover , let T := S nSi�m Ri. Then:



410 P. Pokarowski(1) m � 1;(2) the sets R1; : : : ; Rm; T are a partition of S;(3) fT i.o.g = ; a.s.;(4) fR1 ult.g [ : : :[ fRm ult.g = 
 a.s.An ACC R is a recurrent class if it satis�es additionally the followingcondition: fR i.o.g = \j2Rfj i.o.g:In general, an ACC is not necessarily a recurrent class but for homoge-neous MCs, both these notions reduce to the notion of a closed class (seeSection 2.5 of [Io]).A nonhomogeneous Markov chain (Xt)t�0 on the state space S is saidto be a chain with powerly diminishing transitions (PDTC) if for all i; j 2 Swith i 6= j, c"dijt � PrfXt+1 = j jXt = ig � C"dijt ;where C; c > 0, 0 < "t+1 � "t < 1 for t � 0, limt!0 "t = 0, 0 � dij � 1,"1t := 0.The family of PDTC contains MCs generated by SA if we set, for i 6= j,dij := n (uj � ui)_ 0 if �ij > 0,1 otherwise.In the sequel we will consider only PDTCs.The recurrence order of i, denoted by �i, is de�ned to be the number�i := supnc � 0 : Prn! 2 
 :Xt�0 "ct1(Xt(!) = i) =1o > 0o; i 2 S(we set sup ; = �1).Note that a state i 2 S of a PDTC is recurrent if and only if �i � 0.Furthermore �i � %, where % := supfc � 0 :Pt�0 "ct =1g. Suppose that(5:1) Xt�0 "%t =1:To state the main result of this section, Theorem 5.1, it will be convenientto modify de�nitions of a directed forest and its parameters, given in Sections1 and 3.A forest on a domain A � S, A 6= ;, is a subgraph f = (A;Ef) of g(L)without cycles, in which from every state i 2 A there is at most one outgoingedge. Let FA(R) be the set of all forests in g(L) on the domain A with rootR � A. Similarly to the de�nitions given in Section 3, we introduce dA(f)and dA(FA(R)). For simplicity, we write dA(i) in place of dA(FA(fig)) fori 2 A. The analogues of the coe�cients hi in Corollary 3.1 arehA(i) := dA(i)�minj2A dA(j):



Directed forests 411For ; 6= A � S, letV (A) := mini2R;j2SnA[hA(i) + dij ](we set min ; :=1, V (S) :=1 and 1�1 =1).A cup in the graph g�(D) is a minimal set A � S such that V (A) � %.It can be proved that in every graph g�(D) there is at least one cup andthat two di�erent cups in g�(D) are disjoint.The main result of this section decribes recurrent classes and recurrentorders of PDTCs in terms of directed forest expansions.Theorem 5.1. (1) For every A � S, A is a recurrent class if and onlyif A is a cup.(2) For every i 2 S, if i belongs to some cup, then �i = % � hA(i);otherwise �i = �1.The results of Connors and Kumar and their method of solving \balanceequations" for similar recurrence orders�i := supnc � 0 :Xt�0 "ctPr(Xt = i) =1owere a starting point of the paper [NiPo]. In this paper the tail �-�eld of aPDTC was characterized in terms of the recurrence ordersi(!) := supnc � 0 :Xt�0 "ct1(Xt(!) = i) =1o:The is and cups were expressed there by balance equations, without usingdirected forest expansions. Moreover, we proved that the solutions of thebalance equations are unique. Borkar [Bo], using a similar technique, derivedbalance equations for i. Niemiro [Ni] applied the description of the tail�-�eld to analyse convergence in probability for PDTCs generated by SAalgorithms. It is worth noting that, unlike �i, the recurrence orders �i areuniquely determined and can be e�ciently computed.If assumption (5.1) is not satis�ed, to prove Theorem 5.1 it is su�cientto replace the condition \V (A) � %" by \V (A) > %" in the de�nition of acup.The theorem leads to an explicit criterion of reachability (a.s.) of everyset A for PDTCs.Corollary 5.1. For a PDTC and every A � S, the following conditionsare equivalent :(1) PrfA i.o.g = 1.(2) Prf9t�0Xt 2 Ag = 1.(3) In every cup there is a state which belongs to A.



412 P. PokarowskiApplication of this corollary to MCs generated by the SA algorithm andto the set S� := fi 2 S : 8j2S ui � ujg of global minima yields Connorsand Kumar's theorem [ConKu]. References[Al] D. A ldous, Reversible Markov chains and random walks on graphs, preprint,1994.[Bo] V. S. Borkar, Pathwise recurrence orders and simulated annealing, J. Appl.Probab. 29 (1992), 472{476.[BoMa] R. Bot t and J. P. Mayber ry, Matrices and trees, in: Economic ActivityAnalysis, O. Morgenstern (ed.), Wiley, New York, and Chapman & Hall,London, 1953, 391{400.[Cha] S. Cha iken, A combinatorial proof of the all minors matrix tree theorem,SIAM J. Algebraic Discrete Methods 3 (1982), 319{329.[Che] W.-K. Chen, Applied Graph Theory, Graphs and Electrical Networks, 2nded., North{Holland, New York, 1976.[ChiCho] T.-S. Ch iang and Y. Chow,Asymptotic behavior of eigenvalues and randomupdating schemes, Appl. Math. Optim. 28 (1993), 259{275.[ConKu] D. P. Connor s and P. R. Kumar, Simulated annealing type Markov chainsand their balance equations, SIAM J. Control Optim. 27 (1989), 1440{1461.[CvDoSa] D. M. Cvetkov i�c, M. Doob and H. Sachs, Spectra of Graphs|Theory andApplications,Deutscher Verlag Wiss., Berlin, 1979, and Academic Press, NewYork, 1979.[DeKuKu] M. Desa i, S. Kumar and P. R. Kumar, Quasi-statically cooled Markovchains, Probab. Engrg. Inform. Sci. 8 (1994), 1{19.[DiSt] P. D iacon i s and D. St roock, Geometric bounds for eigenvalues of Markovchains, Ann. Appl. Probab. 1 (1991), 36{61.[Din] I. H. D inwood i e, A probability inequality for the occupation measure of areversible Markov chain, ibid. 5 (1995), 37{43.[FieSe] M. F i ed l e r and J. Sed l�acek, O w-basich orientovan�ych grafu, �Cas. Pest.Mat. 83 (1958), 214{225 (in Czech).[FreWe 1] M. I. Fre id l i n and A. D. Wentze l l, On small random perturbations ofdynamical systems, Russian Math. Surveys 25 (1970), 1{55.[FreWe 2] |, |, Random Perturbations of Dynamical Systems, Springer, New York,1984.[GrTaHe] W. K. Gras smann, M. I. Taksa r and D. P. Heyman, Regenerative anal-ysis and steady-state distributions for Markov chains, Oper. Res. 33 (1985)1107{1116.[HasHav] R. Has s in and M. Hav iv,Mean passage times and nearly uncoupledMarkovchains, SIAM J. Discrete Math. 5 (1992), 386{397.[HeRe] D. P. Heyman and A. Reeve s, Numerical solution of linear equations aris-ing in Markov chain model , ORSA J. Comput. 1 (1989), 52{60.[Hi] T. L. H i l l, Studies in irreversible thermodynamics IV. Diagrammatic repre-sentation of steady state uxes for unimolecular systems, J. Theoret. Biol.10 (1966), 442{459.



Directed forests 413[HwSh 1] C.-R. Hwang and S.-J. Sheu, Large-time behavior of perturbed di�usionMarkov processes with applications to the second eigenvalue problem for Fok-ker{Planck operators and simulated annealing, Acta Appl. Math. 19 (1990),253{295.[HwSh 2] |, |, Singular perturbed Markov chains and exact behaviors of simulatedannealing processes, J. Theor. Probab. 5 (1992), 223{249.[In] S. Ing ra s s i a, On the rate of convergence of the Metropolis algorithm andGibbs sampler by geometric bounds, Ann. Appl. Probab. 4 (1994), 347{389.[Io] M. Io s i f e s cu,Finite Markov Processes and Their Applications,Wiley, 1980.[KeSn] J. G. Kemeny and J. L. Sne l l, Finite Markov Chains, Van Nostrand,Princeton, 1960.[KiGeVe] S. K i rkpat r i ck, C. D. Ge la t t and M. P. Vecch i, Optimization by simu-lated annealing, Science 220 (1983), 671{680.[KoVo] H. H. Koh l e r and E. Vo l lmerhaus, The frequency of cyclic processes inbiological multistate systems, J. Math. Biol. 9 (1980), 275{290.[Me et al.] W. Metropo l i s, A. Rosenb lu th, M. Rosenb lu th, A. Te l l e r and E.Te l l e r,Equations of state calculations by fast computing machines, J. Chem.Phys. 21 (1953), 1087{1092.[Mo] B. Mohar,The Laplacian spectrum of graphs, in: Y. Alavi et al. (eds.),GraphTheory, Combinatorics and Applications, Wiley, New York, 1991, 871{898.[Ni] W. Niemi ro, Limit distributions of Simulated Annealing Markov chains,Discussiones Math. 15 (1993), 241{269.[NiPo] W. Niemi ro and P. Pokarowsk i, Tail events of some nonhomogeneousMarkov chains, Ann. Appl. Probab. 5 (1995), 261{293.[O'C] C. A. O'C inne ide, Entrywise perturbation theory and error analysis forMarkov chains, Numer. Math. 65 (1993), 109{120.[Po 1] P. Pokarowsk i, Directed forests and algorithms related to Markov chains,Inst. Math., Polish Acad. Sci., 1997 (in Polish).[Po 2] |, Uncoupling measures and eigenvalues of stochastic matrices, J. Appl.Anal. 4 (1998), 261{269.[RoWi 1] J. R. Roh l i c ek and A. S. Wi l l sky, The reduction of Markov generators:An algorithm exposing the role of transient states, J. Assoc. Comput. Mach.35 (1988), 675{696.[RoWi 2] |, |, Multiple time scale decomposition of discrete time Markov chains,Systems Control Lett. 11 (1988), 309{314.[RomSa] F. Romeo and A. Sang iovann i-V incentel l i, A theoretical framework forsimulated annealing, Algorithmica 6 (1991), 367{418.[Sch 1] P. J. Schwe i t z e r, Perturbation theory and �nite Markov chains, J. Appl.Probab. 5 (1968), 401{413.[Sch 2] |, Perturbation series expansions of nearly completely decomposable Markovchains, in: J. W. Cohen, O. J. Boxma and H. C. Tijm (eds.), TelegraphicAnalysis and Computer Performance Evaluation, Elsevier, North-Holland,Amsterdam, 1986.[Sh] B. O. Shuber t, A ow-graph formula for the stationary distribution of aMarkov chain, IEEE Trans. Systems Man. Cybernet. 5 (1975), 565{566.[Si] A. S inc l a i r, Improved bounds for mixing rates of Markov chains and multi-commodity ow , Combin. Probab. Comput. 1 (1992), 351{370.[So] A. D. Soka l, Monte Carlo Methods in Statistical Mechanics: Foundationsand New Algorithms, Cours de Troisi�eme Cycle de la Physique en SuisseRomande, Lausanne, June 1989 (unpublished).



414 P. Pokarowski[Ste] G.W. Stewar t, Introduction to Matrix Computations,Academic Press, NewYork, 1973.[Ste-W] W. J. S tewar t, Introduction to the Numerical Solution Markov Chains,Princeton Univ. Press, Princeton, 1994.[We] A. D. Wentze l l, On the asymptotics of eigenvalues of matrices with ele-ments of order exp(Vij=2"2), Dokl. Akad. Nauk SSSR 202 (1972), 263{265(in Russian); English transl.: Soviet Math. Dokl. 13 (1972), 65{68.Piotr PokarowskiInstitute of MathematicsPolish Academy of Sciences�niadeckich 800-950 Warsaw, PolandE-mail: pokar@impan.gov.pl Current address:Institute of Applied Mathematics and MechanicsWarsaw UniversityBanacha 202-097 Warszawa, PolandE-mail: pokar@hydra.mimuw.edu.plReceived on 26.9.1998


