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Abstract

For a graph G, let fij be the number of spanning rooted forests in which vertex
j belongs to a tree rooted at i. In this paper, we show that for a path, the fij’s can
be expressed as the products of Fibonacci numbers; for a cycle, they are products
of Fibonacci and Lucas numbers. The doubly stochastic graph matrix is the matrix

F =
(fij)n×n

f
, where f is the total number of spanning rooted forests of G and n is the

number of vertices in G. F provides a proximity measure for graph vertices. By the
matrix forest theorem, F−1 = I + L, where L is the Laplacian matrix of G. We show
that for the paths and the so-called T-caterpillars, some diagonal entries of F (which
provide a measure of the self-connectivity of vertices) converge to φ−1 or to 1 − φ−1,
where φ is the golden ratio, as the number of vertices goes to infinity. Thereby, in the
asymptotic, the corresponding vertices can be metaphorically considered as “golden
introverts” and “golden extroverts,” respectively. This metaphor is reinforced by a
Markov chain interpretation of the doubly stochastic graph matrix, according to which
F equals the overall transition matrix of a random walk with a random number of
steps on G.

Keywords: Doubly stochastic graph matrix; Matrix forest theorem; Fibonacci num-
bers; Laplacian matrix; Vertex-vertex proximity; Spanning forest; Golden ratio

AMS Classification: 05C50, 05C05, 05C12, 15A51, 11B39, 60J10

1 Introduction

Let G = (V, E) be a simple graph with vertex set V = V (G), |V | = n, and edge set
E = E(G). Suppose that n ≥ 2.

A spanning rooted forest of G is any spanning acyclic subgraph of G with a single vertex
(a root) marked in each tree.

∗To appear in Disc. Appl. Math. (2007), http://dx.doi.org/10.1016/j.dam.2007.08.030
†E-mail addresses: chv@member.ams.org, upi@ipu.ru
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Let fij = fij(G) be the number of spanning rooted forests of G in which vertices i and
j belong to the same tree rooted at i. The matrix (fij)n×n is the matrix of spanning rooted

forests of G. Let f = f(G) be the total number of spanning rooted forests of G.

The matrix F =
(fij)n×n

f
is referred to as the doubly stochastic graph matrix [14, 15, 24, 23]

or the matrix of relative connectivity via forests. By the matrix forest theorem [7, 8, 5],

F−1 = I + L (1)

and
f = det(I + L), (2)

where L is the Laplacian matrix of G, i.e. L = D − A, A being the adjacency matrix of G
and D the diagonal matrix of vertex degrees of G. Most likely, the matrix (I +L)−1 = F was
first considered in [11]. Chaiken [4] used the matrix adj(I + L) = (fij)n×n for coordinatizing
linking systems of strict gammoids. The (i, j) entry of F can be considered as a measure
of proximity between vertices i and j in G; the (i, i) entry measures the self-connectivity of
vertex i.

A path is a connected graph in which two vertices have degree 1 and the remaining
vertices have degree 2. Let Pn be the path with V (Pn) = {1, 2, . . . , n} and E(Pn) =
{(1, 2), (2, 3), . . . , (n − 1, n)}, see Fig. 1(a).
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Figure 1: (a) the path Pn; (b) the T-caterpillar Tn; (c) the cycle Cn.

All spanning rooted forests of P4 and the spanning rooted forests in which vertex 1
belongs to a tree rooted at vertex 2 are shown in Fig. 2, where thick dots denote roots.

The matrix F for P4 is

F (P4) =
(fij)

f
=

1

21







13 5 2 1
5 10 4 2
2 4 10 5
1 2 5 13







.

Let Tn be the graph obtained from Pn by replacing the edge (1, 2) with (1, 3): V (Tn) =
{1, 2, . . . , n} and E(Tn) = {(1, 3), (2, 3), (3, 4), . . . , (n − 1, n)}, see Fig. 1(b). We call Tn a
T-caterpillar.
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Figure 2: The spanning rooted forests in P4 and the forests where 1 is in a tree rooted at 2.

Let Cn, n ≥ 3, be the cycle on n vertices: V (Cn) = {1, 2, . . . , n} and E(Cn) =
{(1, 2), (2, 3), . . . , (n − 1, n), (n, 1)}, Fig. 1(c).

By (Φi)i=0,1,2,... = (0, 1, 1, 2, 3, 5, . . .) we denote the Fibonacci numbers. Sometimes, it is
convenient to consider the subsequences of Fibonacci numbers with odd and even subscripts
separately:

Φ′
i = Φ2i−1, i = 1, 2, . . . ;

Φ′′
i = Φ2i, i = 0, 1, 2, . . . .

In Section 2 we study the spanning rooted forests in paths, cycles, and T-caterpillars, in
Section 3 the results are interpreted in terms of vertex-vertex proximity, and Sections 4 and 5
present interpretations of the doubly stochastic graph matrix in terms of random walks and
information dissemination, respectively.

2 Spanning rooted forests in paths, cycles, and

T-caterpillars

Theorem 1 Let G be a path, G = Pn. Then f = Φ′′
n and fij = Φ′

min(i,j) ·Φ
′
n+1−max(i,j) for all

i, j = 1, . . . , n.

The number f(G) of spanning rooted forests in any graph G is equal to the number of
spanning trees in the graph G+1, which is G augmented by a “hub” vertex adjacent to every
vertex of G. Indeed, a bijection between the spanning rooted forests of G and spanning
trees of G+1 is established by connecting every root of every spanning rooted forest to the
“hub” by an edge. If G = Pn, then G+1 is a fan graph sometimes also called a “terminated
ladder.” The fact that the number of spanning trees in this G+1 equals Φ′′

n is familiar to
electrical network theorists ([18], cf. [16, 17, 1]). Among others, it was obtained by Hilton [12].
Myers [20] proved this using the notion of weighted composition; in [3] this fact was derived
using Chebyshev polynomials. Our aim is to give a direct combinatorial proof of Theorem 1
in order to fully clarify the recurrence structure of spanning rooted forests in a path. Here, a
proof of f(Pn) = Φ′′

n is integrated with a proof of the expression for fij given in Theorem 1.
For any graph G, F(G) will denote the set of spanning rooted forests of G.
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Proof of Theorem 1. Let Fm = F(Pm), let f(m) = |Fm|, m = 1, 2, . . . . Then for every
k ≥ 1,

f(k + 1) = |F
k+1
(1,2)| + |F

k+1
(1,2)

|, (3)

where Fm
(1,2) = {F ∈ Fm | (1, 2) ∈ E(F)} and Fm

(1,2)
= Fm

rFm
(1,2).

Let Fm
∗ = F∗(Pm) = {F ∈ Fm | 1 is a root in F}. Then in (3)

|F
k+1
(1,2)

| = |F
k| and |F

k+1
(1,2)| = |F

k+1
∗ |. (4)

Indeed, a bijection between F
k+1
(1,2)

and Fk can be established by the restriction of each

F ∈ F
k+1
(1,2)

to the vertex subset {2, . . . , k}; a bijection between F
k+1
(1,2) and Fk+1

∗ is established

as follows: for every F ∈ F
k+1
(1,2) obtain F

′ by putting F
′ = F if 1 is a root in F and by

removing edge (1, 2) and marking vertex 1 as a root, otherwise. Then F
′ ∈ Fk+1

∗ and this
correspondence is one-to-one.

By (3) and (4),
f(k + 1) = f(k) + f ∗(k + 1) k = 1, 2, . . . , (5)

where f ∗(m) = |Fm
∗ |. Let Fm

(∗1,2) = Fm
∗ ∩Fm

(1,2), m = 1, 2, . . . . Using (4) we obtain

f ∗(k + 1) = |F
k+1
(1,2)

| + |F
k+1
(∗1,2)| = |F

k| + |F
k
∗ | = f(k) + f ∗(k), k = 1, 2, . . . . (6)

Here, a bijection between F
k+1
(∗1,2) and Fk

∗ is established by coalescing vertex 2 with the

root 1 and collapsing edge (1, 2).
Observe now that f(1) = 1 = Φ′′

1 and f ∗(1) = 1 = Φ′
1. By (5) and (6), f(k) and f ∗(k)

satisfy the same recurrence relations as Φ′′
k and Φ′

k do, respectively. Therefore

f(k) = Φ′′
k and f ∗(k) = Φ′

k, k = 1, 2, . . . . (7)

Thus, f = f(n) = Φ′′
n. To find fij , i, j = 1, . . . , n, observe that fij counts the spanning

rooted forests that contain the i–j path rooted at i. To obtain a spanning rooted forest, this
path can be completed on the subset of vertices {1, . . . , min(i, j)} in f ∗(min(i, j)) ways and
on the subset of vertices {max(i, j), . . . , n} in f ∗(n + 1−max(i, j)) ways. Since the ways of
these types are all compatible, (7) implies that fij = Φ′

min(i,j) · Φ
′
n+1−max(i,j). �

Theorem 1 as well as Theorem 2 below can also be proved algebraically by means of the
matrix forest theorem (Eqs. (1) and (2)). We present combinatorial proofs here, since they
are a bit more illuminating. However, Theorem 3 below is proved algebraically.

Theorem 2 Let G be a cycle, G = Cn with n ≥ 3. Then f = Φ′
n + Φ′

n+1 − 2 and

fij = Φ′′
|j−i| + Φ′′

n−|j−i|, i, j = 1, . . . , n.

For G = Cn, the augmented graph G+1 mentioned above is the wheel on n + 1 vertices.
The fact that the number of spanning trees in the wheel is Φ′

n + Φ′
n+1 − 2 is due to Sedláček

[21] and Myers [19]. Myers [20] proved this using identities involving weighted compositions;
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the proof by Benjamin and Yerger [2] is based on counting imperfect matchings. A useful
tool for solving such problems is Chebyshev polynomials, see [17, 3, 25]. Our proof of the
identity f(Cn) = Φ′

n+Φ′
n+1−2 presented here for completeness is based on relations between

forests found before. The proof of Theorem2 relies on the following lemma.

Lemma 1 For n ≥ 2, let Fn
∗∗ = {F ∈ F(Pn) | 1 and n are roots in F}. Then |Fn

∗∗| = Φ′′
n−1.

Proof. A bijection between Fn
∗∗ and the set F(Pn−1) of spanning rooted forests in Pn−1 can

be established as follows. For every F ∈ F(Pn−1) define F
′ as the spanning subgraph of Pn

whose roots satisfy two conditions:
(1) vertex i is a root in F

′ iff [i = 1 or i = n or (i − 1, i) 6∈ E(F)];
(2) (i, i + 1) ∈ E(F′) iff i is not a root in F.

In this case, F
′ is a spanning rooted forest of Pn. Indeed, if one assumes that some tree

in F
′ has no root or has more than one root, then this would imply the presence of a tree

with more than one root or no root in F, respectively. Furthermore, every F
′ ∈ Fn

∗∗ has a
pre-image in F(Pn−1), and this correspondence is by definition one-to-one.

Consequently, by (7), |Fn
∗∗| = |F(Pn−1)| = Φ′′

n−1. �

Proof of Theorem 2. Let Fm
ij be the set of spanning rooted forests of Cm in which j

belongs to a tree rooted at i. Observe that

fij =
∣
∣F

n
i⌢j

∣
∣ +

∣
∣F

n
i⌣j

∣
∣ , (8)

where Fn
i⌢j = {F ∈ Fn

ij | (n, 1) 6∈ E(F)} and Fn
i⌣j = {F ∈ Fn

ij | (n, 1) ∈ E(F)}.

We now show that
∣
∣Fn

i⌣j

∣
∣ = Φ′′

|j−i|. Every forest in Fn
i⌣j contains the path Pn+1−|j−i|

formed by the vertices in the sequence (max(i, j), . . . , n, 1, . . . , min(i, j)) and the edges be-
tween the neighboring elements in this sequence. The ways of completing this path to obtain
a spanning rooted forest in Cn can be put into a one-to-one correspondence with the elements
of the set F

|j−i|+1
∗∗ defined in Lemma 1. Indeed, linking each F̃ ∈ F

|j−i|+1
∗∗ with Pn+1−|j−i| by

replacing the vertices 1 and |j − i| + 1 of F̃ with vertices i and j of Pn+1−|j−i|, respectively,
produces a spanning rooted forest of Cn, and every spanning rooted forest of Cn can be
uniquely obtained in this manner. Thus by Lemma 1,

∣
∣Fn

i⌣j

∣
∣ = |F

|j−i|+1
∗∗ | = Φ′′

|j−i|. Similarly,
∣
∣Fn

i⌢j

∣
∣ = |F

n+1−|j−i|
∗∗ | = Φ′′

n−|j−i|. Therefore by (8) it follows that fij = Φ′′
|j−i| + Φ′′

n−|j−i|.

Let Fm = F(Cm), m ≥ 3. Then

f(Cn) = |F(1,n)| + |F(1,n)∗| + |F∗(1,n)|, (9)

where
F(1,n) = {F ∈ F

m | (1, n) 6∈ E(F)},

F(1,n)∗ = {F ∈ F
m | (1, n) ∈ E(F) and the path joining 1 with the root contains n},

F∗(1,n) = {F ∈ F
m | (1, n) ∈ E(F) and the path joining n with the root contains 1}.

Obviously, |F(1,n)| = |F(Pn)|, so, by Theorem 1, |F(1,n)| = Φ′′
n. Consider any F ∈ F(1,n)∗.

Removing (1, n) from E(F) and marking 1 as a root produces a forest F
′ ∈ F∗(Pn), where

5



F∗(Pn) = {F ∈ F(Pn) | 1 is a root in F} was defined in the proof of Theorem 1. All elements
of F∗(Pn) can be obtained in this way, except for the whole path Pn rooted at 1. That is
why |F(1,n)∗| = |F∗(Pn)| − 1 and, by (7), |F(1,n)∗| = Φ′

n − 1. Similarly, |F∗(1,n)| = Φ′
n − 1.

Substituting this in (9) provides

f(Cn) = Φ′′
n + 2(Φ′

n − 1) = Φ′
n + Φ′

n+1 − 2. �

Now recall that
Λi = Φi−1 + Φi+1,

where Φ−1 = 1, are the Lucas numbers: (Λi)i=0,1,2,... = (2, 1, 3, 4, 7, 11, 18, 29, 47, . . .), see,
e.g., [13]. The Lucas numbers satisfy the same recurrence as the Fibonacci numbers do:

Λi + Λi+1 = Λi+2, i = 0, 1, 2, . . . ,

but some other properties of the Lucas numbers are even more elegant than those of the
Fibonacci numbers.

By Theorem 2, f(Cn) = Λ2n − 2. The numbers of forests in a cycle can also be expressed
via smaller Fibonacci and Lucas numbers, viz. Corollary 1 holds.1

Corollary 1 Let G be a cycle, G = Cn with n ≥ 3. Then

f =

{

Λ2
n, n = 2k − 1

5Φ2
n, n = 2k

; fij =

{

ΦtΛn, n = 2k − 1

ΛtΦn, n = 2k
, i, j = 1, . . . , n,

where t =
∣
∣n − 2 |j − i|

∣
∣.

Corollary 1 is derived from Theorem 2 by means of classical identities involving Fibonacci
and Lucas numbers. It provides a simple expression for the entries of the doubly stochastic
graph matrix F =

(fij)

f
of Cn:

Corollary 2 The entries of the doubly stochastic matrix F =
(fij)

f
of Cn (n ≥ 3) are:

fij

f
=

{

Φt/Λn, n = 2k − 1

Λt/5Φn, n = 2k
, i, j = 1, . . . , n, (10)

where t =
∣
∣n − 2 |j − i|

∣
∣.

In the expression (10), for every row of F , the numerators make up a segment of a fixed
symmetric two-sided sequence: for odd n this sequence is (. . . , 34, 13, 5, 2, 1, 1, 2, 5, 13, 34, . . .);
for even n it is (. . . , 47, 18, 7, 3, 2, 3, 7, 18, 47, . . .). Thereby the ratio of two corresponding
elements of F is the same for all n of the same parity.

Regarding the T-caterpillars, we are mainly interested in the total number f of spanning
rooted forests and the diagonal entries f33 and fnn of the matrix of spanning rooted forests.

1A knot theory interpretation of the squareness of Λ2n − 2 when n is odd can be found in [22].
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Theorem 3 Let G be a T-caterpillar, G=Tn. Then f =4Φ′
n−1, f33 =4Φ′

n−2, and fnn =4Φ′′
n−2.

Proof. Observe that Φ′′
0 = 0, Φ′′

1 = 1, and for i = 1, 2, . . . ,

Φ′′
i+1 = Φ2i+2 = Φ2i + Φ2i+1 = Φ2i + Φ2i + Φ2i−1

= 2Φ2i + Φ2i − Φ2i−2 = 3Φ′′
i − Φ′′

i−1. (11)

Similarly, Φ′
1 = 1 and for i = 1, 2, . . . ,

Φ′
i+1 =

{

3Φ′
i − Φ′

i−1, i > 1

2Φ′
i, i = 1

. (12)

For a T-caterpillar,

I + L =

















2 0 −1 0 0 · · · 0 0 0
0 2 −1 0 0 · · · 0 0 0

−1 −1 4 −1 0 · · · 0 0 0
0 0 −1 3 −1 · · · 0 0 0
0 0 0 −1 3 · · · 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 · · · 3 −1 0
0 0 0 0 0 · · · −1 3 −1
0 0 0 0 0 · · · 0 −1 2

















. (13)

Equations F (I + L) = I (see (1)) and (13) imply

2fn1 − fn3 = 0,

2fn2 − fn3 = 0,

−fn1 − fn2 + 4fn3 − fn4 = 0,

−fn3 + 3fn4 − fn5 = 0, (14)

........................................

−fn,n−2 + 3fn,n−1 − fnn = 0,

−fn,n−1 + 2fnn = f.

Note that fn1 = fn2 = 2 = 2Φ′′
1, since Tn has exactly two spanning rooted forests where

vertex 1 belongs to a tree rooted at n, one of them being Tn with root n, the other Tn with
edge (2, 3) deleted and roots n and 2. Then, by (14), fn3 = 2fn1 = 4 = 4Φ′′

1. Consequently,
using (14), (11) and induction, we obtain that

fn4 = 4fn3 − fn1 − fn2 = 12 = 4(3Φ′′
1 − Φ′′

0) = 4Φ′′
2,

fn5 = 3fn4 − fn3 = 4(3Φ′′
2 − Φ′′

1) = 4Φ′′
3,

........................................................................ (15)

fnn = 3fn,n−1 − fn,n−2 = 4(3Φ′′
n−3 − Φ′′

n−4) = 4Φ′′
n−2.
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From the last equation of (14), f = 2fnn − fn,n−1 = 4(2Φ′′
n−2 − Φ′′

n−3) = 4(Φ′′
n−2 + Φ′

n−2) =
4Φ′

n−1. It remains to show that f33 = 4Φ′
n−2. Eqs. (1) and (13) imply

− f33 + 3f34 − f35 = 0,

−f34 + 3f35 − f36 = 0,

........................................ (16)

−f3,n−2 + 3f3,n−1 − f3n = 0,

−f3,n−1 + 2f3n = 0.

Since f3n = fn3 = 4 = 4Φ′
1, from (16) and (12) we have that f3,n−1 = 4Φ′

2 and, by induction,
f33 = 4Φ′

n−2. �

3 “Golden introverts” and “golden extroverts”

In [7, 8, 9] (see also [14, 15, 6]) F =
(fij)n×n

f
was studied as a matrix of vertex-vertex proximity.

For every graph G, F is a positive definite doubly stochastic matrix and
fij

f
measures the

relative strength of connections between vertices i and j in G. This proximity measure was
referred to as the relative connectivity via forests. For some additional applications of F we
refer to [11, 10].

It turns out [15, Theorem 2] that for every pair of vertices i and j such that j 6= i,
fij ≤ fii/2; fii

f
can be considered as a measure of self-connectivity of vertex i. By [14,

Corollary 7], fii

f
≥ (1 + di)

−1, where di is the degree of vertex i.

A vertex i can be called “an introvert” if fii

f
> 0.5 (or, equivalently, fii >

∑

j 6=i fij)

and “an extrovert” if fii

f
< 0.5 (equivalently, fii <

∑

j 6=i fij). The complete graph on three

vertices provides an example of the boundary case where fii

f
= 0.5 and fii =

∑

j 6=i fij for
every vertex i.

Proposition 1 Let φ be the golden ratio, φ =
√

5+1
2

. Then

(i) For the paths Pn, lim
n→∞

f11

f
= φ−1 ;

(ii) For the T-caterpillars Tn, lim
n→∞

fnn

f
= φ−1 and lim

n→∞
f33

f
= 1 − φ−1.

Proof. By Theorem 1 and Binet’s Fibonacci number formula, for the paths Pn,
lim

n→∞
(f11/f) = lim

n→∞
(Φ′

n/Φ′′
n) = φ−1. By Theorem 3, for the T-caterpillars Tn, lim

n→∞
(fnn/f) =

lim
n→∞

(4Φ′′
n−2/4Φ′

n−1) = φ−1 and lim
n→∞

(f33/f) = lim
n→∞

(4Φ′
n−2/4Φ′

n−1) = φ−2 = 1 − φ−1. �

Corollary 3 Let φ be the golden ratio, φ =
√

5+1
2

. Then

(i) For the paths Pn, lim
n→∞

f11
P

i6=1

f1i
= φ ;

(ii) For the T-caterpillars Tn, lim
n→∞

fnn
P

i6=n

fni
= φ and lim

n→∞

P

i6=3

f3i

f33

= φ.

8



Corollary 3 follows from Proposition 1 and the fact that F is stochastic.
It can be shown that (ii) of Proposition 1 and (ii) of Corollary 3 remain true for the

graphs resulting from T-caterpillars by the addition of edge (1, 2).
In accordance with Corollary 3, as n → ∞, vertices 1 and n in a path and vertex n in a

T-caterpillar tend to be “golden introverts” (named after the golden ratio), whereas vertex 3
in a T-caterpillar tends to become a “golden extrovert.” This provides a kind of sociological
interpretation of Corollary 3.

4 A random walk interpretation of the doubly

stochastic graph matrix

To better comprehend what exactly the results of the previous section mean, consider a
random walk interpretation of the doubly stochastic graph matrix.

For a graph G, consider any Markov chain whose states are the vertices of G, {1, 2, . . . , n},
and the probabilities of all i→j transitions with i 6= j are proportional2 to the corresponding
elements of the adjacency matrix of G:

pij = εaij, i, j = 1, . . . , n, i 6= j. (17)

Then the diagonal elements of the transition matrix P = (pij) are determined as follows:

pii = 1 −
∑

j 6=i

εaij , i = 1, . . . , n (18)

and, in a matrix form,
P = I − εL(G),

where L(G) is the Laplacian matrix of G.
The maximum value of ε that guarantees correctness, i.e., the nonnegativity of the di-

agonal entries (18) for all simple graphs on n vertices, is obviously ε = (n − 1)−1. On the
other hand, ε = (n−1)−1 is the only correct ε that allows the self-transition probabilities pii

to be zero. Therefore it makes sense to consider this value of ε and the Markov chain with
transition matrix

P = I − (n − 1)−1L(G) (19)

in more detail.
For this chain, let us examine random walks with a random number of steps. Namely,

consider a sequence of independent Bernoulli trials indexed by 0, 1, 2, . . . with a certain
success probability q. Suppose that the number of steps in a random walk equals the trial

2There are two popular methods of attaching a Markov chain to a graph. The first one is based on (17);
for any undirected graph it provides a symmetric transition matrix with, in general, nonzero diagonal.
The second method assumes that pij = aij/

∑n

k=1
aik. For an undirected graph without loops it generally

provides a nonsymmetric transition matrix with zero diagonal.
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number of the first success. Then the number of steps, K, is a geometrically distributed
random variable:

Pr {K = k} = q(1 − q)k, k = 0, 1, 2, . . . .

Suppose that q = 1/n. For this value, the expected number of steps is n − 1, which is
the number of edges in every spanning tree of G. Then

Pr {K = k} =
1

n

(

1 −
1

n

)k

, k = 0, 1, 2, . . . . (20)

Let Q = (qij) be the matrix with entries

qij = Pr {XK = j | X0 = i}, i, j = 1, . . . , n, (21)

where Xk is the state of the Markov chain under consideration at step k, i.e., Q is the
transition matrix of the overall random walk with a random number of steps K.

Theorem 4 For a graph G on n vertices and the corresponding Markov chain whose transi-

tion matrix is (19), let Q be the transition matrix (21) of the overall random walk whose num-

ber of steps is geometrically distributed with parameter 1/n. Then Q = F, where F =
(fij)n×n

f

is the doubly stochastic matrix of G.

Proof. Since the spectral radius of P is 1, for every q such that 0 < s < 1

∞∑

k=0

(sP )k = (I − sP )−1

holds. Consequently, using the formula of total probability, (20), (19) and the matrix forest
theorem (1) we obtain

Q =

∞∑

k=0

Pr {K = k}P k =

∞∑

k=0

1

n

(

1 −
1

n

)k

P k

=
1

n

(

I −

(

1 −
1

n

)

P

)−1

= (I + L)−1 = F. �

By virtue of Theorem 4, if a “golden extrovert” walks randomly in accordance with the
above model, she eventually finds herself on a visit φ times more often than at home, whereas
for a “golden introvert” the situation is opposite.
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5 A concluding note: a communicative interpretation
of the doubly stochastic graph matrix

In closing, let us mention an interpretation of the doubly stochastic graph matrix in terms
of information dissemination. Suppose that a sequence of information units (or ideas) are
transmitted through a graph G. A plan of information transmission is a rooted forest
F ∈ F(G): every information unit (idea) is initially injected into the roots of F; after that
it comes to the other vertices along the edges of F. Suppose that every time a possible plan
is chosen at random: the probability of every choice is |F(G)|−1 = f. Then

(fij)n×n

f
is the

probability that an information unit arrives at j from root i. As a result, for a “golden
introvert” the expected proportion of “her own” (injected straight into her mind) ideas to
adopted ideas is φ, whereas for a “golden extrovert” the proportion is inverse.

References

[1] Basin, S. L., The appearance of Fibonacci numbers and the q matrix in electrical network

theory, Mathematics Magazine 36 (1963), pp. 84–97.

[2] Benjamin, A. T. and C. R. Yerger, Combinatorial interpretations of spanning tree iden-

tities, Bulletin of the Inst. for Combinatorics and its Applications 47 (2006), pp. 37–42.

[3] Boesch, F. T. and H. Prodinger, Spanning tree formulas and Chebyshev polynomials,
Graphs and Combinatorics 2 (1986), pp. 191–200.

[4] Chaiken, S., A combinatorial proof of the all minors matrix tree theorem, SIAM Journal
on Algebraic and Discrete Methods 3 (1982), pp. 319–329.

[5] Chebotarev, P. and R. Agaev, Forest matrices around the Laplacian matrix, Linear
Algebra and its Applications 356 (2002), pp. 253–274.

[6] Chebotarev, P. and E. Shamis, The forest metrics for graph vertices, Electronic Notes
in Discrete Mathematics 11 (2002), pp. 98–107.

[7] Chebotarev, P. Y. and E. V. Shamis, On the proximity measure for graph vertices

provided by the inverse Laplacian characteristic matrix, in: 5th Conference of the Inter-

national Linear Algebra Society (1995), pp. 30–31.

[8] Chebotarev, P. Y. and E. V. Shamis, The matrix-forest theorem and measuring relations

in small social groups, Automation and Remote Control 58 (1997), pp. 1505–1514.

[9] Chebotarev, P. Y. and E. V. Shamis, On proximity measures for graph vertices, Au-
tomation and Remote Control 59 (1998), pp. 1443–1459.

[10] Fouss, F., A. Pirotte, J.-M. Renders and M. Saerens, Random-walk computation of

similarities between nodes of a graph with application to collaborative recommendation,
IEEE Transactions on Knowledge and Data Engineering 19 (2007), pp. 355–369.

11



[11] Golender, V. E., V. V. Drboglav and A. B. Rosenblit, Graph potentials method and its

application for chemical information processing, Journal of Chemical Information and
Computer Sciences 21 (1981), pp. 196–204.

[12] Hilton, A. J. W., Spanning trees and Fibonacci and Lucas numbers, The Fibonacci
Quarterly 12 (1974), pp. 259–262.

[13] Koshy, T., “Fibonacci and Lucas Numbers,” Wiley-Interscience, 2001.

[14] Merris, R., Doubly stochastic graph matrices, Publikacije Elektrotehnickog Fakulteta
Univerzitet U Beogradu, Serija: Matematika 8 (1997), pp. 64–71.

[15] Merris, R., Doubly stochastic graph matrices II, Linear and Multilinear Algebra 45

(1998), pp. 275–285.

[16] Morgan-Voyce, A. M., Ladder-network analysis using Fibonacci numbers, IRE Transac-
tions on Circuit Theory 6 (1959), pp. 321–322.

[17] Mowery, V. O., Fibonacci numbers and Tchebycheff polynomials in ladder networks,
IRE Transactions on Circuit Theory 8 (1961), pp. 167–168.

[18] Myers, B. R., Number of trees in a cascade of 2-port networks, IEEE Transactions on
Circuit Theory 14 (1967), pp. 284–290.

[19] Myers, B. R., Number of spanning trees in a wheel, IEEE Transactions on Circuit Theory
18 (1971), pp. 280–282.

[20] Myers, B. R., On spanning trees, weighted compositions, Fibonacci numbers, and resistor

networks, SIAM Review 17 (1975), pp. 465–474.
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