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For a transition probability matrix P, any vetor ��� satisfying���T = ���TP; Xi2S �i = jj���jj1 = 1; (1)is alled a stationary probability distribution f. [11, 13℄. Besides stationary distribution,some other harateristis of a Markov hain are also of interest, suh as �rst-passage timebetween states or the number of visits in a �xed state before absorption. To ompute them,one has also to solve a system of linear equations similar to (1).The most elegant way to deal with (1) is to �nd the analytial formulas for the solution ofthe system. Unfortunately, it is usually impossible and the only way is to solve the problemnumerially [18℄. Problems arise from the omputational point of view beause of the largenumber of states whih systems may oupy. It is not unommon for thousands of states tobe generated even for simple appliations. On the other hand these Markov hains are oftensparse and possess spei� struture.Example To illustrate the appliations of Markov hains let us onsider a simple modelof an interative omputer system. Figure 1 represents the arhiteture of a time-shared,paged, virtual memory omputer. This model was widely studied in the literature [4, 18℄; itis onsidered again in more detail in Appendix. The system onsists of: a set of terminalsfrom whih users generate ommands; a entral proessing unit (CPU); a seondary memorydevie (SM); an I/O devie (I/O). A queue of requests is assoiated with eah devie and
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I/OFig. 1. Illustration for Interative Computer Systemthe sheduling is assumed to be FCFS (First Come First Served). When the ommand isgenerated, the user at the terminal remains inative until the system responds. Symbolially,a user having generated a ommand enters the CPU queue. The behavior of the proess in thesystem is haraterized by a omputing time followed by a page fault, after whih the proessenters the SM queue, or an input/output (�le request), in whih ase the proess enters theI/O queue. Proesses whih terminate their servie at SM or I/O queue return to the CPUqueue. Completion of a ommand is represented by a departure of the proess from the CPUto the terminals.States of the Markov hain orresponding to our model are determined by numbers ofproesses in all queues: i. e. S = f(x; y; z) 2 N3 : x+ y+ z � ng for n users; three oordinatesorrespond to the number of proesses in three queues. The state spae is large but sparse insense of onnetions; there are maximum 6 transitions going out from any state, orrespondingto entering or exiting a queue by a proess.



Related researh A lot of researh has been done onerning the numerial solutions of somelinear equations that our when one studies Markov hains (see for example [4, 18℄). Almostall methods for solving a system of linear equations are adapted into this ontext: iterativeand diret methods, projetion tehniques and the onept of preonditioning (see [19℄). Theappliability of a method depends strongly on the struture of a Markov hain onsidered.For solving the hain of medium size, diret methods ould be applied. In Setion 3the GTH (Grassmann-Taksar-Heyman [9℄) algorithm whih is a modi�ation of the standardGaussian elimination, is adopted for dealing with small subsystems arising from deompositionof large Markov hain.When the state spae of the hain is large, even if it has sparse struture, for most of diretsolving methods, elimination of one nonzero element of the matrix, produe several nonzeroelements in positions whih previously ontained zero. This negative phenomenon is alled�ll-in and the amount of it an be so extensive that available memory is quikly exhausted.To avoid immense �ll-in iterative methods an be used, as in that ase, the only operationin whih the matries are involved are multipliations by one or more vetors. These operationsdo not alter the form of the matrix. For these reason, iterative methods (suh as Gauss-Seideliteration or Suessive Overrelaxation) have traditionally been preferred to diret methods.On the other hand, a major disadvantage of iterative methods is a very long time oftenrequired for onvergene to the desired solution (see disussion in [18, 19℄ and the referenestherein). In the ase of diret methods the upper bound on the time required to obtain thesolution may be determined a priori.In this paper we fous on nearly unoupled or nearly ompletely deomposable Markovhains (see [2, 5, 18℄). Suh hains often arise in queueing network analysis, large sale eo-nomi modeling and omputer systems performane evaluation. The state spae of thesehains an be naturally divided into groups of states suh that transitions between states be-longing to di�erent groups are signi�antly less likely than transitions between states withinthe same group.For solving nearly unoupled Markov hains, a family of methods has been proposed.They are jointly lassi�ed as iterative aggregation/disaggregation [12℄ methods, and based ona deompositional approah. The idea follows well known divide and onquer priniple | ifthe model is too large or omplex to analyze, it is divided into separate subproblems. Ideally,subproblems an be solved independently and the global solution is obtained by \merging"the subproblem solutions together.Our ombinatorial aggregation approah an be seen as a generalization of existing aggre-gation algorithms. The most important advantages over previous methods are:{ The presented algorithm uses ombinatorial properties of direted forests in the underly-ing graph of a Markov hain. Combinatorial and graph-theoreti approah simpli�es thedesription of algorithm and proof of orretness whih relies on ertain fats about forestexpansions of solutions of linear equation systems. These fats are formulated in MatrixTree Theorem and extensions of it proved in [1, 14℄.{ The appliability of traditional aggregation methods is restrited to Markov hains witha regular NCD struture1; in partiular, the existene of asymptotially transient states(i.e., those states with the outgoing probability of a bigger order of magnitude than theingoing probability) are problemati (suh states are very ommon in large Markov hainresulting from pratial examples). Algorithms derived from our method work orretlywhen suh states are present.1 See onditions 6:1� 6:4 in [18℄ pp. 335.



{ All known aggregation methods onsidered in the literature are designed only to solvethe problem of stationary distribution, and other harateristis of Markov hain arenegleted. In ontrast to this, our approah o�ers possibility of designing proedures forother harateristis too.Struture of the paper In Setion 2 a mathematial theory behind the algorithms isskethed (see [14, 15℄ for more detailed treatement). The following setion ontains algorithmthemselves. The omplexity analysis and several ase studies an be �nd in Setion 4. InAppendix we report results of experiments we have performed | they are very promisingand learly justify the appliability of the algorithm in pratial problems.2 Direted forests methodConsider a direted graph G = (S;E); let the set of verties (alled also states) S =f1; 2; : : : sg, for some s � 1. The lassi�ation of states in a graph follows the Markov hainterminology (see [11, 13℄ for a detailed treatment of Markov hain theory). State j is reahablefrom state i if there exists a path leading from i to j (we use the short notation i ! j). Astate i is alled reurrent if, for any state j, i ! j implies j ! i; otherwise, i is alledtransient. The Markov hain and its graph are alled irreduible. when i ! j and j ! ifor all states i; j.A strong omponent of G is any maximal subgraph C of G, with the property that i! jfor any two states i; j of C. A strong omponent is absorbing if it has no outgoing edges.Strong absorbing omponents are also alled losed lasses in the sequel. An underlyinggraph of eah Markov hain has at least one strong absorbing omponent.An ayli subgraph f = (S;Ef ) of G ontaining all its verties, in whih any state hasout-degree at most 1 is alled a direted spanning forest. A set of states R � S withno outgoing edges in Ef forms a root of a forest. When the root is singleton we talk aboutdireted spanning tree. We write shortly forest (tree) instead of direted spanning forest(tree).Let FG(R) denote the set of all forests in G having the root R (a forest is identi�ed withthe set of its edges). We will omit the subsript G when it is obvious from the ontext. Forreadability, if R = fi1; i2; : : : img we use the notation F(i1; : : : im) instead of F(R). For �xedi =2 R and j 2 R, Fij(R) � F(R) denotes the set of all forests with the root R, ontaining apath from i to j.Now we enrih direted graphs with weights, orresponding to the probability of hangingthe state in a Markov hain. A square matrix A of size s with elements from R indues agraph G(A) with states f1; 2; : : : ; sg and edges between all pairs (i; j) with aij 6= 0. In G(A)we de�ne the (multipliative) weight of a forest f = (S;Ef ) asw(f) = Y(i;j)2Ef (�aij)and the weight of a set F of forests is de�ned byw(F) = Xf2F w(f):For ompleteness, we put w((S; ;)) := 1 (empty forest) and w(;) := 0 (empty set of forests).



It was observed that many fats are valid simultaneously for both disrete and ontinuoustime Markov hains. To deal with them at the same time we use, following [14℄, a laplaianmatrix, i.e. matrix L = (lij)si;j=1, lij 2 R satisfying lii = �Pj: j 6=i lij for i = 1; : : : ; s. Denoteby I the identity matrix of size s. Let P be the transition probability matrix of a Markovhain. It is easy to verify that matrix L = I � P is a laplaian matrix indued by P. Fromnow on, we assume that the Markov hain is introdued by the Markov hain laplaianmatrix ,i. e., laplaian matrix with non-positive real o�-diagonal entries. Suh matries areknown in graph theory and ombinatoris (see disussion in [14℄ and the referenes therein).For U;W � S and a square matrix A of size s, let us denote by A(U ��W ) the submatrixof A resulting from deletion of rows and olumns indexed by U and W respetively. Forthe simpliity of notation we write Aij instead of A(fig��fjg). Let es and 0s denote olumnvetors with eah omponent equal to 1 and 0, respetively.Many harateristis of Markov hains are solutions of systems of linear equations of thefollowing form2: LT (R��R)x = b; (2)whereR is a subset of states and b is a nonnegative vetor of size s�jRj; LT denotes transposedmatrix. As an example of (2), onsider omputing the stationary distribution. By (1), thestationary distribution of a Markov hain de�ned by a laplaian matrix L = (lij)si;j=1 is anonnegative, normalized vetor ��� = (�1; : : : ; �s)T , being the solution of following system:���TL = 0Ts : (3)Assuming for simpliity that the states numbering implies �s > 0, one of possible ways ofsolving (3) is to ompute the solution x of a system of the form (2):LssTx = �(l11; : : : ; l1s�1)T (4)and then to normalize the vetor (xT ; 1). On the other hand solving system (2) an be reduedto omputing the solution of (3) for appropriately de�ned laplaian L.We express the solution of a system of linear equations as a rational funtion of diretedforest weights (alled the forest expansion) f. [14℄. For stationary distribution this is for-mulated in the following theorem (proved independently by many authors, among them [7,16℄):Theorem 1 (Markov hain tree theorem). If the underlying graph of a Markov hainhas exatly one absorbing strong omponent, then the stationary distribution is given by:�i = w(F(i))Pj2S w(F(j)) , for i = 1; : : : s;Nearly ompletely deomposable (NCD) Markov hains (see [2, 5, 18℄) are de�nedby laplaian matries that an be ordered so that the matrix has a blok struture in whihthe nonzero elements of the o�-diagonal bloks are small ompared with those of the diagonalbloks. Suh matries often arise in queueing network analysis, large sale eonomi modelsand omputer systems performane evaluation.2 Our method an be also adapted for a non-transposed ase L(R��R)x = b; this result is to bereported elsewhere.



In the literature one an �nd some generalizations of NCD Markov hains, aiming inexpressing several di�erent orders of magnitude of interation strength (see for example [10℄).In [14℄ a wide lass of Markov hains has been de�ned, subsuming previously known lasses.For given funtions A;B : R ! R, the notation A(") � B(") means that:lim"!0 A(")B(") = 1:We also set A(") � 0, if there exists "1 6= 0 suh that for any " 2 (�"1; "1), A(") = 0.A family fL(") = (lij("))si;j=1; " 2 (0; "1)g of laplaian matries of size s� s is a powerlyperturbed Markov hain, if there exist matries ��� = (Æij)i;j2S , and D = (dij)i;j2S , Æij � 0and dij 2 R [ f1g, for i; j 2 S, suh that the asymptoti behavior of laplaians L(") isdetermined by ��� and D as follows: �lij(") � Æij"dij : (5)We assume that dij = 1 if and only if Æij = 0. In the following, we also use the onept ofpowerly perturbed nonnegative vetor whih is de�ned as the family fb("); " 2 (0; "1)g ofnonnegative vetors of size u, suh that for some vetors ��� = (�i)ui=1 and z = (zi)ui=1, with�i � 0, zi 2 R [ f1g, for i = 1; : : : ; u, the following holds:bi(") � �i"zi : (6)Consider the following graph indued by matrix D (we take into aount asymptotiallynonzero entries): G�(D) = (S; f(i; j) 2 S � S : Æij 6= 0g):For an arbitrary forest f and a set F of forests in G�(D) we study parameters:(i) 8>>><>>>: d(f) := X(i;j)2f dijÆ(f) := Y(i;j)2f Æij9>>>=>>>; an asymptoti weight of the forest f .
(ii) 8>><>>: d(F) :=minf2F d(f)Æ(F) := Xf2F :d(f)=d(F) Æ(f)9>>=>>; an asymptoti weight of the set of forests F .Now, let w(f)(") and w(F)(") denote the weight of a forest f and a set F of forests in the graphG(L(")) indued by L("), respetively. Observe that for suÆiently small ", G(L(")) = G�(D).The following fat is easy to prove:Fat 2. Consider a powerly perturbed Markov hain de�ned by L, with matries ��� and Dsuh that (5) above holds; furthermore let f and F be a forest and a set of forests in G�(D).Then:(i) w(f)(") � Æ(f)"d(f);(ii) w(F)(") � Æ(F)"d(F).



We desribe the asymptoti behavior of solutions of system LT (RjR)x = b, related topowerly perturbed Markov hains, in terms of direted forests expansions. It turns out that asolution of a system of linear equations, for a perturbed hain, an be treated as a perturbedvetor. Proof omitted here an be found in [14℄.Theorem 3. Let matries ��� and D be suh that (5) above holds, for a powerly perturbedMarkov hain fL("); " < "1g; let R � S, where S is a set of states. Moreover let vetors ���and z of size u := s � jRj be suh that (6) holds, for a powerly perturbed vetor b. Supposethat there exist a forest with the root R in G�(D). Then the solution x(") = (xi("))i2SnR ofthe system LT (RjR)(")x(") = b(")satis�es for i 2 S nR the relation xi(") � �i"hi ;where the oeÆients �i, hi are some onstants, i = 1; : : : ; u.In the speial ase of stationary distribution, (i. e., equation (4)) we have:hi := d (F(fig))�minj2S d (F(fjg)) ;�i := Æ (F(fig))Æ Xj: hj=0 Æ (F(fjg)) : (7)Unfortunately, all obtained expressions for asymptoti oeÆients (vetors h and ��� fromTheorem 3) are omputationally non-tratable, at least diretly, beause of their exponentialsize. We disuss the aggregation approah, yielding e�etive and aurate proedures foromputing the asymptoti oeÆients and approximate values of the stationary probabilityvetor of NCD Markov hain.3 Combinatorial aggregationAsymptoti oeÆients and exat solutions. Before desribing the algorithm for om-puting asymptoti oeÆients h and ���, we explain how it an be used to obtain the approxi-mation of stationary distribution vetor.The algorithm takes as an input laplaian L = (lij) de�ning Markov hain and parameter" and onsists of three steps:1. onstrut matries ��� and D suh that:�lij = Æij"dij ;2. run Algorithm 1 to ompute vetors ��� and h;3. set �i(") := �i"hi ;When " < minij �(lij), we have dij = 0 (for all i; j), hene L =��� and Algorithm 1 givesthe exat solution (in partiular, hi = 0, for all i). In that ase, no aggregation an be doneand algorithm runs a diret (GTH) method. On the other hand, larger "'s allow to pro�t froma spei� blok struture of a laplaian matrix, whih improves eÆieny. Hene, there existsa tradeo� between time/spae eÆieny of the algorithm and preision of the approximation.



Fast omputation of forest expansions. The algorithm redues the size of state-spaeof a Markov hain by lumping together losely related states. This proess is repeated inthe onseutive phases of aggregation; during eah phase graphs indued by matries D and��� are onsidered. The algorithm groups states in eah losed lass of the graph and solvesthe system of linear equations restrited to this lass. Smaller size, hene tratable, systemsof equations an be solved by a diret method. The solutions of these systems are used toupgrade the values of asymptoti oeÆients omputed for eah state of the original Markovhain. Before passing to a next phase, an aggregation proedure is performed, lumping allstates in eah losed lass into a new, aggregated state.The task of omputing exponents hi is of quite di�erent nature than the task of omputingthe oeÆients �i. While the former an be performed using purely ombinatorial methods(hene preisely), the latter uses a proedure of solving a system of linear equations, exposedto numerial errors. Although alulating oeÆients �i is of ruial importane, in the sequelwe onentrate on hi only (we explain later how to alulate �i).Algorithm 1 Calulate asymptoti oeÆient � and h.1: onstrut G0 = (S0; E0)2: k := 03: repeat4: k := k + 15: �nd partition of Gk�1 into losed lasses6: onstrut Sk7: for eah losed lass in Sk, say Ik do8: onstrut laplaian Lk9: ompute stationary distribution i. e., solve the system LTk x = b10: ompute m(Ik) (f. (8))11: for eah aggregated state Ik�1 in Ik do12: ompute hk(Ik�1jIk) and �k(Ik�1jIk)13: for eah state i aggregated into state Ik�1 do14: upgrade �i = �(ijIk) and hi = h(ijIk) aording to (11)15: end for16: end for17: for all neighbors of lass Ik do18: determine shortest edges19: end for20: end for21: onstrut new set of aggregated edges Ek22: Gk := (Sk; Ek)23: until Gk has only one losed lassConsider the graph G := G�(D) and its subgraph Gmin, onsisting of the shortest edgesoutgoing from eah vertex, i.e., for eah vertex i, of those dij whih are equal tom(i) := minj dij : (8)Shortest edges orrespond to the largest order of magnitude of probability of moving fromstate i to j. Reall that D = (dij). In a single step of the aggregation proess, the graph G isreplaed by another graph G0 = aggr(G). Verties of G0 are losed lasses I of Gmin together



with transient states in Gmin. Edges (I; J) in G0 are weighted by dIJ de�ned by the followingformula: dIJ := mini2I;j2J(dij + h(ijI)); whereh(ijI) := maxk2I m(k)�m(i): (9)Values h(ijI) are omputed in Algorithm 1 | they orrespond to oeÆients hi in a graphrestrited to a losed lass I . Lemma 4 below justi�es suh an aggregation sheme in orderto alulate hi | reall from (7) that to this aim we need d(F(i)). From Lemma 4 (and froman aompanying fat for �i) one derives orretness of (10) below. Let i denote any state ofG suh that there exists some tree rooted in i (i. e. F(i) 6= ;). By a shortest tree rooted ini we mean any tree f rooted in i suh that d(f) is minimal, i.e.,d(f) = minf 02F(i) d(f 0) = d(F(i)):Lemma 4 ([14℄). Let f be a shortest tree in G, rooted in i, and let I be a losed lass inGmin ontaining i, i 2 I. Let fI be a shortest tree in the subgraph of Gmin indued by I,rooted in i. Moreover, let f 0 be a shortest tree in G0, rooted in I. The following holds (forsimpliity, we apply here notation d( ) to graph G0 as well):d(f) = d(fI) + d(f 0):Aiming at omputing the oeÆients �i and hi e�etively, onsider the following aggre-gation proess, whih gives rise to the sequene of graphs Gi = (Si; Ei), for i = 0; 1; : : : ;starting from i = 1, the supersript i enumerates onseutive phases of algorithm.Initially, de�ne the graph G0 as Gmin, where G = G�(D). So, in the �rst step we startwith the subgraph of G�(D) onsisting of all shortest edges outgoing from every vertex. Fork = 1; 2; : : : , we de�ne indutively G0k = aggr(Gk�1). Reall that the states of G0k are alllosed lasses and all transient states in Gk�1; the set of edges linking the aggregated states isonstruted as in (9). Now, as a new graph Gk we take (G0k)min, whose states are the same asin G0k and whose edges are the shortest edges in G0k. Notie that the main loop ends preiselywhen the partitioning of Gk�1 results in the only one losed lass together with possibly sometransient states.From now on, we identify the aggregated state I 2 Sk with the set of states from S itontains. For a �xed state i, onsider the family of losed lasses (aggregated states):fig � I1 � I2 � : : : � In = S n T(T denotes the subset of transient states) ontaining i during the onseutive phases of aggre-gation. We assume that the graph Gn, resulting from the n-th phase, is irreduible. Denote by�(ijIk) and h(ijIk) oeÆients �i and hi omputed in the subgraph restrited to some losedlass Ik. Following this onvention, �k(Ik�1jIk) and hk(Ik�1jIk) orrespond to the � and hoeÆient for the aggregated state Ik�1 omputed during the k-th phase for the subgraph ofGk restrited to a losed lass Ik. The following reursive relation was proved in [14℄:�i(") � �1(ijI1)"h1(ijI1)�2(I1jI2)"h2(I1jI2) � : : : � �n(In�1jIn)"hn(In�1jIn)�(In) (10)where �(In) = 1 is the stationary probability of being inside the lass In. This relation holdsdue to the iterative upgrade sheme for asymptoti oeÆients (step 14 in Algorithm 1), the



orretness of whih follows by Lemma 4:h(ijIk) = h(ijIk�1) + hk(Ik�1jIk)�(ijIk) = �(ijIk�1)�k(Ik�1jIk) (11)CoeÆients hk(Ik�1jIk) an be omputed using the value of m(Ik) (step 12):hk(Ik�1jIk) = maxI�Ik m(I)�m(Ik�1):So, we have only to onsider all verties I aggregated during the previous step, whih belongto the losed lass Ik.Finally, we need to explain how to ompute e�etively �k(Ik�1jIk) in step 12. Reallthat we have assumed that the Markov hain under onsideration possesses a spei� blokstruture, namely the sizes of all losed lasses Ik are small ompared with the size of thewhole state spae. It opens the possibility of using diret methods for solving systems ofthe form LTk x = b, independently inside eah lass Ik. For the solution the following holds:xk(") � �k"hk . Now having already omputed hk and putting some �xed ", the orrespondingoeÆients �k are derived as the solution of the equation:�k(Ik�1jIk) = xIk�1"�hk(Ik�1jIk):4 Complexity analysisThe upper bound on time omplexity of Algorithm 1 is O(n3), where n is the number ofstates. The upper bound on memory needed is O(n2). However, the omplexity of algorithmdepends strongly on the struture of a Markov hain under onsideration. In this setion westudy in detail some important ases. The main onlusion is that if we an pro�t from aspei� struture of a matrix (e.g. if we hoose an appropriate "), time O(n2) is suÆient.Moreover, when a matrix is sparse, i.e. the number of edges m is signi�antly smaller thatO(n2), the algorithm uses only O(n +m) spae. This is ruial sine matries appearing inappliations are often sparse and it is not rare that m = �(n). These estimates stronglymotivate further studies to establish an appropriate value of parameter ".Consider a laplaian with n states and m edges (i.e. m is the number of nonzero entriesin the probability transition matrix). Assume that in a step of the aggregation proess, theunderlying graph is divided into k losed lasses of size n1; n2; : : : ; nk, respetively (i.e. n1 +n2 + : : :+ nk = jSj, transient state are singleton losed lasses).Theorem 5 ([8℄). The time and spae osts of a single phase of aggregation (in both algo-rithms) are as follows: T = O(n+m+ kXi=1 ni3);S = O(n+m+ max1�i�k ni2):



The ost of the algorithm for stationary distribution is equal to the total ost of all aggre-gation phases. It is diÆult to foresee, in general, the number of phases and the number oflosed lasses in eah phase. This is why we study below some speial ases | the aim is todemonstrate that the omplexity is strongly dependent on the degree of aggregation. In thefollowing let p denote the number of phases; when neessary, we use supersripts, like n(i),k(i), m(i), nj (i), to denote the number of states, et., in phase i; n(1) = n;m(1) = m, et.By Stotal and Ttotal we denote below the total time and spae ost of all aggregation phases,respetively.1. p = 1; k = 1; a pessimisti ase | all states are aggregated during the �rst step; GTHproedure is performed on the whole matrix; Ttotal = O(n3); Stotal = O(n2).2. p = n� 1, k(i) = n� i; \lazy" aggregation | after step i there are still n� i� 1 isolatedstates; Ttotal = O(n2); Stotal = O(n+m).3. The \ripple" aggregation: here we assume that n = b�; there are p = b aggregation phases.In the �rst phase  states are aggregated into a losed lass; while other states are isolated;in eah onseutive phase a group of  states is added to the losed lass while remainingstates stay isolated. The time ost of the �rst phase is then T = O(n+m+(n�+3)): If wetake  = �(pn) then the ost of whole omputation is Ttotal = O(n2); Stotal = O(n+m).4. The \ideal" equilibrated aggregation, i.e. k(i) = pn(i). Assume that n(1) = 22l , for somel � 1. We have then p = l, k(i) = n(i+1) = pn(i), nj (i) = pn(i), j � pn(i). It is an easyalulation to show that Ttotal = O(n2); Stotal = O(n+m).5. Consider an abstrat algorithm onsisting of several phases, suh that the ost of eahphase is polynomial w.r.t. the size of input data for this phase. Assumed that the size ofinput data dereases at least twie in eah phase, the total ost of the algorithm is of thesame order of magnitude as the ost of its �rst phase.Now, look at the generalized ideal aggregation sheme: k(i) = (n(i))1�"; nj(i) = (n(i))",j � k(i), n = n(1) = 2�l , where � = 11�" and 0 < " < 1. The size of the problem inthe i-th phase of aggregation is n(1�")i . The following inequality holds: n(1�")i < n2i ,hene the ost of the whole omputation is dominated by the ost of the �rst phase:Ttotal = O(m+ n(1+2")):5 Summary and open problemsWe presented a new approximation algorithm based on the ombinatorial approah proposedby Pokarowski [14℄ for omputing the stationary distribution of a Markov hain. The omplex-ity of our algorithm was analyzed in detail. Both analyti and experimental results obtainedby us lassify this new method as a potentially very useful tool in pratie. Some ase studiesof Markov models for ommuniation systems are reported in Appendix.The experiments show several advantages of our algorithm over existing methods:{ omparison with GTH proedure shows that preision of approximation omputed by ouralgorithm is on the quite aeptable level of log 1" for the prespei�ed parameter ";{ a very promising appliation of our algorithm is to use the approximate solution it yieldsas a starting point for some iterative methods e.g. blok suessive over relaxation (f. Ap-pendix).An important unsolved problem is to develop a method of hoosing an appropriate valueof deomposability parameter ". In our approah some preproessing phase is assumed toperform this task.
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AppendixWe report here outome of our algorithm used to ompute stationary distribution of twoMarkov models: interative omputer system (mentioned already in Introdution) and two-dimensional teleommuniation model. To ompare our method with existing ones we performthe following experiment: stationary distribution vetor is approximated by our algorithmand the obtained solution is used then as a starting point for Blok Iterative Over Relaxation(BSOR) method. We measure the speedup (in the number of iteration) ompared with BSORstared from the uniform distribution until the prespei�ed preision is reahed.5.1 Blok Suessive Over Relaxation (BSOR)Blok suessive over relaxation method belongs to the lass of stationary iterative methodswhih an be expressed in the simple form [6℄:x(k+1) = Ax(k) + ; k = 0; 1; : : : ;where neither A nor  depend on the iteration step k. In partiular, BSOR proedure (seeAlgorithm 2) is parametrized by:{ starting solution vetor;{ relaxation parameter ! (0 < ! < 2);{ blok partitioning of the matrix;{ stop riterion.Algorithm 2 assumes the partitioning of laplaian matrix into N bloks; i-th diagonal blokdenoted by Lii is of size ni. In the sequel we onsider �ve blok partitioning strategies:Algorithm 2 BSOR method for solving the system LT (R��R)��� = 0repeatfor i = 1 to N do z(k+1)i := (1� !)LTiix(k)i � !(i�1Xj=1LTjix(k+1)j + NXj=i+1LTjix(k)j )Solve (e.g. using GTH method) system of equations:LTiix(k+1)i = z(k+1)iend fornormalize vetor x := (xT1 ; : : : ;xTN) where xTi = (xi1; xi2; : : : ; xini)T :�ij := xijPNi=1Pnij=1 xijuntil stop riterion sueedsSCC We are looking for strongly onneted omponents in the underlying graph of the Markovhain. Edges weighted with probability less than " (prespei�ed deomposability parame-ter) are ignored. This partitioning oinides with one resulting from the near-deomposabilitytest of the Markov Chain Analyzer (MARCA) [20℄.



CC Consider a graph obtained from underlying graph of the hain by replaing eah diretededge having probability greater than " by an undireted one. Bloks for partitioning arethen the onneted omponents of this graph.CC* As before partitioning is indued by onneted omponents, but additionally all singletonsare grouped into a single omponent. This strategy was used in [6, 3℄Aggr We take a partitioning into losed lasses omputed during the �rst phase of ombinatorialaggregation. Reall that in the aggregation proess the subgraph of shortest edges leavingeah state is onsidered.Asymp The omplete aggregation proess whih approximates the stationary distribution induesa partition of states into bloks aording to the values of asymptoti oeÆients: eahblok groups states with the same value of hi. Suh a partitioning is illustrated in Figure 3for two-dimensional Markov hain model.5.2 Interative Computer SystemWe ome bak to the model desribed in Figure 1 (for a detailed treatment see [17℄). We reallthat the model represents a time-shared multiprogrammed, paged, virtual memory omputersystem, modeled as a losed queueing network. In order to perform numerial experimentswe assign spei� values for the parameters of the model aording to [17℄. Reall that thestate of the system is oded by a triple (x; y; z) of non-negative numbers, where x denotesthe number of users thinking or busy at theirs terminals, y and z denote, respetively, thenumber of proesses in the queue of SM and I/O. Obviously x + y + z � N . There are atmost six transition whih an be made from any state, to states obtained by inreasing ordereasing one of three oordinates. ICS example (N = 50)starting ��� partition # bl. # it. jj����jj1 jj���TLjj1SCC=Aggr 51 22 0:45e� 10 0:59e� 16uniform CC* 1221 161 0:92e� 10 0:16e� 14CC 1326 252 0:99e� 10 0:26e� 14SCC=Aggr 51 4 0:97e� 10 0:69e� 16aggregation CC* 1221 48 0:95e� 10 0:17e� 14CC 1326 48 0:95e� 10 0:17e� 14Table 1.For ICS model with 50 users we perform several experiments with iterative method. Inthis ase matrix de�ning Markov hain is of order 23; 426 with 156; 026 non-zero elements.The solution omputed by ombinatorial aggregation is used as a starting vetor for BSORalgorithm. The speed of onvergene, measured in the number of iterations, is ompared withBSOR starting from the uniform distribution. We investigate three blok partitionings:1. SCC for " = 0:0002 whih gives the same partition as Aggr into 51 strongly onnetedomponents.2. CC* for " = 0:1 yields 1221 bloks (onneted omponents).3. CC for " = 0:003 results in 1326 bloks.



The stopping riterion we use in BSOR is jj���(k)����(k�1)jj1 � stop tolwhere stopping toleranestop tol is set to 10�10. In the table jj����jj1 is the in�nity norm of the di�erene between thelast two iterates and jj���TLjj1 is the true residual upon termination.Notie (f. Table 1) that starting from approximate solution omputed by ombinatorialaggregation allows us to redue the number of iterations about 4 � 5 times. In some asese.g. for SCC partition the time ost of Algorithm 1 is omparable with the ost of the�rst iteration of BSOR. One an additionally aelerate ombinatorial aggregation by usingiterative method (e.g. SOR) instead of GTH for solving subproblems inside losed lasses.5.3 A Two-Dimensional Markov Chain Model
u v

Sx Sy

lost if u = N x
lost if v = N yFig. 2. Teleommuniation model for 2D exampleWe onsider here a two dimensional Markov hain, studied e.g. in [6, 20℄. It is a simpleteleommuniation model illustrated in Figure 2. There are two servers; eah has a queue ofwaiting tasks of prespei�ed maximum size. A task arrives, wait for the �rst server, then waitsfor the seond and �nally leaves the network. The states are pairs (u; v) where u ranges from2D example (Nx = Ny = 64)starting ��� partition # bl. # it. jj����jj1 jj���TLjj1CC 65 505 0:96e� 10 0:25e� 11uniform Asymp 129 595 0:98e� 10 0:31e� 11CC 65 410 0:98e� 10 0:25e� 11aggregation Asymp 129 414 0:97e� 10 0:31e� 112D example (Nx = Ny = 128)starting ��� partition # bl. # it. jj����jj1 jj���TLjj1CC 129 1030 0:99e� 10 0:51e� 11uniform Asymp 257 1212 0:99e� 10 0:59e� 11CC 129 868 0:99e� 10 0:52e� 11aggregation Asymp 257 876 0:99e� 10 0:58e� 11Table 2.0 through Nx and v ranges from 0 through Ny. States orrespond to the size of two queues.In this model we assume transitions to the South, East and North-West. The state spae ofthe Markov hain is of size (Nx + 1)(Ny +1). In larger experiments the values of Nx and Nyare both set to 128, yielding a matrix of order 16; 641 with 66; 049 nonzero elements. For thismodel we perform several experiments:



Fig. 3. Aggregation in 2D example.1. the approximate solution is alulated using ombinatorial aggregation algorithm for " =0:06;2. the solution is omputed by BSOR proedure with CC partitioning (" = 0:06) andAsymp. We start from the uniform distribution.3. the solution is omputed using BSOR starting from approximation obtained by ombina-torial aggregation, the same partitionings are onsidered.Figure 3 illustrates the proess of aggregation for Nx = Ny = 4. There are 8 phases ofaggregation eah shown in a separate �gure. We see a subgraph of shortest edgesGmin in everyphase; dashed line surrounds the only non-singleton losed lass appearing in that phase. Inthe last �gure the states are olored aording to the values of their asymptoti oeÆientsyielding Asymp partition for BSOR. These orrespond to onseutive aggregation phases,i.e. those states whih are aggregated earlier have bigger stationary probability. Despite thatduring every step there is only one non-singleton losed lass, i.e. the aggregation does notproeed in parallel, the time needed for the whole omputation in only O(n2).The numerial results are summarized in Table 2. We observe about 25% speedup of BSORmethod started from approximate solution w.r.t. BSOR started from the uniform solution.CC partition behaves better than Asymp, but in the other hand the pro�t from hoosingstarting vetor is greater in Asymp.


