Forest matrices around the Laplacian matrix

Pavel Chebotarev¹ and Rafig Agaev

Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences 65 Profsoyuznaya str., Moscow 117997, Russia

Abstract

We study the matrices Q_k of in-forests of a weighted digraph Γ and their connections with the Laplacian matrix L of Γ . The (i, j) entry of Q_k is the total weight of spanning converging forests (*in-forests*) with k arcs such that i belongs to a tree rooted at j. The forest matrices, Q_k , can be calculated recursively and expressed by polynomials in the Laplacian matrix; they provide representations for the generalized inverses, the powers, and some eigenvectors of L. The normalized in-forest matrices are row stochastic; the normalized matrix of maximum in-forests is the eigenprojection of the Laplacian matrix, which provides an immediate proof of the Markov chain tree theorem. A source of these results is the fact that matrices Q_k are the matrix coefficients in the polynomial expansion of $\operatorname{adj}(\lambda I + L)$. Thereby they are precisely Faddeev's matrices for -L.

AMS classification: 05C50; 15A48

Keywords: Weighted digraph; Laplacian matrix; Spanning forest; Matrix-forest theorem; Leverrier-Faddeev method; Markov chain tree theorem; Eigenprojection; Generalized inverse

1 Introduction

According to the matrix-tree theorem, the (i, j) cofactor of the Laplacian matrix of a weighted digraph equals the total weight of spanning converging trees rooted at vertex i of the digraph.

Fiedler and Sedláček [25] proved that the principal minor of the Laplacian matrix resulting by the removal of the rows and columns indexed by a set \mathcal{J} is equal to the total weight of in-forests with $|\mathcal{J}|$ trees rooted at the vertices of \mathcal{J} .

These results are generalized by the *all minors matrix tree theorem* [17, 10] (see also [53]) which expresses arbitrary minors of the Laplacian matrix in terms of in-forests of the digraph.

We study the matrices, Q_k , of a digraph's in-forests: the (i, j) entry of Q_k is the total weight of in-forests with k arcs where i belongs to a tree converging to j. In this paper, we show that the forest matrices can be recursively calculated and represented by simple polynomials in the Laplacian matrix L; in turn, the powers of L are linear combinations of Q_k 's. Further, we demonstrate that the forest matrices are useful to interpret a number

¹Corresponding author.

E-mail addresses: chv@lpi.ru; pchv@rambler.ru