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Forest matrices around the Laplacian matrix
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Abstract

We study the matrices Qk of in-forests of a weighted digraph Γ and their connections

with the Laplacian matrix L of Γ. The (i, j) entry of Qk is the total weight of spanning

converging forests (in-forests) with k arcs such that i belongs to a tree rooted at j. The

forest matrices, Qk, can be calculated recursively and expressed by polynomials in the

Laplacian matrix; they provide representations for the generalized inverses, the powers,

and some eigenvectors of L. The normalized in-forest matrices are row stochastic;

the normalized matrix of maximum in-forests is the eigenprojection of the Laplacian

matrix, which provides an immediate proof of the Markov chain tree theorem. A source

of these results is the fact that matrices Qk are the matrix coefficients in the polynomial

expansion of adj(λI + L). Thereby they are precisely Faddeev’s matrices for −L.
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1 Introduction

According to the matrix-tree theorem, the (i, j) cofactor of the Laplacian matrix of a weighted

digraph equals the total weight of spanning converging trees rooted at vertex i of the digraph.

Fiedler and Sedláček [25] proved that the principal minor of the Laplacian matrix resulting

by the removal of the rows and columns indexed by a set J is equal to the total weight of

in-forests with |J | trees rooted at the vertices of J .

These results are generalized by the all minors matrix tree theorem [17, 10] (see also [53])

which expresses arbitrary minors of the Laplacian matrix in terms of in-forests of the digraph.

We study the matrices, Qk, of a digraph’s in-forests: the (i, j) entry of Qk is the total

weight of in-forests with k arcs where i belongs to a tree converging to j. In this paper,

we show that the forest matrices can be recursively calculated and represented by simple

polynomials in the Laplacian matrix L; in turn, the powers of L are linear combinations

of Qk’s. Further, we demonstrate that the forest matrices are useful to interpret a number
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of expressions that involve the Laplacian matrix, including those of the group and Moore-

Penrose inverses, and some eigenvectors. Of special interest is the normalized matrix J̃ of

maximum in-forests of a digraph previously used [42, 43] to represent the long run transition

probabilities of Markov chains. We prove that J̃ is the eigenprojection of the Laplacian

matrix corresponding to the eigenvalue 0 and study some properties of J̃ .

A seminal result that enables one to give short algebraic proofs to these representations

is the fact that matrices Qk coincide with the matrix coefficients in the polynomial form of

adj(λI + L):

adj(λI + L) =

n−1∑

k=0

Qn−k−1 λk,

where adjA is the transposed matrix of cofactors of A. This expansion is a corollary to the

parametric matrix-forest theorem [1] which expresses the entries of (I + τL)−1, τ ∈ R in

terms of in-forests.

All results of this paper are applicable to unweighted digraphs (by taking all weights

equal to one) and undirected graphs (by considering symmetric digraphs).

The paper is organized as follows. After the notation section, we briefly survey the ma-

jor known results on the minors of the Laplacian (Kirchhoff) matrix of a weighted digraph

(Section 3), give a new proof to the matrix-forest theorem for digraphs (Section 4), present

a recursive method for calculating the forest matrices (Section 5), establish polynomial rep-

resentations of the forest matrices (Sections 6), study the normalized matrix J̃ of maximum

in-forests (Section 7), consider L and J̃ as linear transformations and show that J̃ is the

eigenprojection of L, which yields the Markov chain tree theorem (Section 8), and finally,

express the generalized inverses of L in terms of the forest matrices (Section 9).

2 Notation

2.1 Graph definitions

For graph terminology, we mainly follow [30]. Suppose that Γ is a weighted digraph without

loops, V (Γ) = {1, . . . , n}, n > 1, is its set of vertices and E(Γ) its set of arcs. The weights

of all arcs are strictly positive. Let W = (wij) be the matrix of arc weights of Γ. Its (i, j)

entry, wij , equals zero iff there is no arc from vertex i to vertex j in Γ. If Γ′ is a subgraph

of Γ, then the weight of Γ′, w(Γ′), is the product of the weights of all its arcs; if Γ′ does

not contain arcs, then w(Γ′) = 1. The weight of a nonempty set of digraphs G is defined as

follows:

w(G) =
∑

H∈G

w(H); w(∅) = 0. (1)

A spanning subgraph of Γ is a subgraph of Γ with vertex set V (Γ). The outdegree of

vertex v is the number of arcs that come from v. A converging tree is a weakly connected

(i.e., its corresponding undirected graph is connected) digraph in which one vertex, called

the root, has outdegree zero and the remaining vertices have outdegree one.
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A converging tree is said to converge to its root. Spanning converging trees are sometimes

called in-arborescences. A converging forest is a digraph all of whose weak components (i.e.,

maximal weakly connected subgraphs) are converging trees. The roots of these trees are the

roots of the converging forest.

Definition 1. An in-forest is a spanning converging forest.

Definition 2. An in-forest F of a digraph Γ is called a maximum in-forest of Γ if Γ has no

in-forest with a greater number of arcs than in F .

Out-forests which diverge from their roots and maximum out-forests are defined in the

same manner. In this paper, we deal with in-forests, but a parallel theory can be developed

for out-forests.

The notion of maximum in-forest of a digraph generalizes the concept of spanning con-

verging tree (in-arborescence). If spanning converging trees of a digraph exist, they coincide

with maximum in-forests; otherwise maximum in-forests inherit some of their properties.

These properties were studied in [1].

It is easily seen that every maximum in-forest of Γ has the minimum possible number

of converging trees; we call this number the in-forest dimension of Γ and denoted it by d.

The number of arcs in any maximum in-forest is obviously n − d; in general, the number of

disjoint trees in a spanning forest with k arcs is n − k.

By F→∗(Γ) = F→∗ and F→∗
k (Γ) = F→∗

k we denote the set of all in-forests of Γ and the

set of all in-forests of Γ with k arcs, respectively; F
i→∗j
k will designate the set of all in-forests

with k arcs where i belongs to a tree converging to j; F i→∗j = ∪n−d
k=0 F

i→∗j
k is the set of such

in-forests with any number of arcs. The notation F→∗
(k) will be used for the set of in-forests

that consist of k trees. The →∗ sign relates to in-forests; the corresponding notation for

out-forests is F∗→, etc.

Let

σk = w(F
→∗
k ), k = 0, 1, . . . , (2)

σ = w(F→∗) =

n−d∑

k=0

σk . (3)

By (2) and (1), σk = 0 whenever k > n − d, and σ0 = 1.

We will also consider the parametric value

σ(τ) =

n−d∑

k=0

σk τk, (4)

which is the total weight of in-forests in Γ provided that all arc weights are multiplied by τ .

Let

sk =

k∑

j=0

σj , k = 0, . . . , n − d (5)

be the total weight of in-forests of Γ with at most k arcs. Then, by definition, sn−d = σ.
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Finally,

sk(τ) =

k∑

j=0

σj τ j , k = 0, . . . , n − d, (6)

whence sn−d(τ) = σ(τ).

2.2 Matrix definitions

For any n×n matrix A, let A(I | J ), where I,J ⊆ {1, . . . , n}, be the submatrix of A obtained

by the removal of the rows indexed by I and the columns indexed by J . For a complex

matrix A, A∗ is the conjugate transpose (Hermitian adjoint) and AT the transpose of A.

The Laplacian (or row Laplacian) matrix of a weighted digraph Γ is the n×n matrix

L = L(Γ) = (ℓij) with entries ℓij = −wij when j 6= i and ℓii = −
∑
k 6=i

ℓik, i, j = 1, . . . , n. The

column Laplacian matrix L′ = L′(Γ) = (ℓ′ij) differs from L by the diagonal only: ℓ′ij = −wij

when j 6= i and ℓ′ii = −
∑
k 6=i

ℓ′ki, i, j = 1, . . . , n. The Kirchhoff (or row Kirchhoff ) matrix

[65] is K = L′ T ; the column Kirchhoff matrix is K ′ = LT . These four singular matrices are

generalizations of the Laplacian (Kirchhoff) matrix of an undirected graph. In what follows,

we deal with the Laplacian matrix L(Γ) and reformulate for it some results originally obtained

for the other matrices.

Throughout let Γ be a fixed digraph. Consider the matrices

Qk = (qk
ij), k = 0, 1, . . . ,

of in-forests of Γ with k arcs: the entries of Qk are

qk
ij = w(F

i→∗j
k ). (7)

By (7) and (1), Qk = 0 whenever k > n − d, and Q0 = I.

The matrix of all in-forests is

Q = (qij) =

n−d∑

k=0

Qk (8)

with entries qij = w(F i→∗j).

We will also consider the normalized matrices of forests:

Jk = σ−1
k Qk, k = 0, . . . , n − d, (9)

J = σ−1Q, (10)

and the parametric matrices

Q(τ) =
n−d∑

k=0

Qk τk, (11)

J(τ) = σ−1(τ)Q(τ), τ ≥ 0, (12)
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where σk, σ, and σ(τ) are defined by (2)–(4).

The normalized matrix of maximum in-forests Jn−d will be also denoted by J̃ :

J̃ = Jn−d .

In the case of undirected graphs, the entries of J̃ are the same within every connected

component. In the directed case, this matrix possesses nontrivial properties determined by

the properties of maximum in-forests, cf. [1].

Proposition 1. The matrices Jk, k = 0, . . . , n − d, J, and J(τ) are row stochastic.

Proof of Proposition 1. Every row sum of Qk, k = 0, . . . , n− d, is σk. Indeed, for every

i = 1, . . . , n, we have

n∑

j=1

qk
ij =

n∑

j=1

w(F
i→∗j
k )

(∗)
= w

( n⋃

j=1

F
i→∗j
k

)
= w(F→∗

k ) = σk .

In the (∗) passage, we used the fact that F
i→∗j1
k ∩F

i→∗j2
k = ∅ whenever j1 6= j2 . Thus, the

nonnegative matrices Jk = σ−1
k Qk are row stochastic. Now the stochasticity of J and J(τ)

follows from their definitions. 2

The aim of this paper is to interpret, in terms of the forest matrices, a number of expres-

sions that involve the Laplacian matrix as well as to provide polynomial expressions for the

forest matrices themselves.

3 Preliminaries

This section briefly surveys some known results on the minors of a digraph’s Laplacian

matrix.

The oldest result of this kind is the matrix-tree theorem by Tutte [64, 65], although some

authors (e.g., [10]; cf. [52]) trace it back to Sylvester [63] and its proof to Borchardt [9].

Theorem 1. For every i, j ∈ V (Γ), ℓij = w(T →∗i) holds, where ℓij is the cofactor of the

(i, j) entry of L and T →∗i is the set of all spanning trees converging to i in Γ.

As stated in [34], “This small formula opens a world of opportunities.”

Tutte [65] formulated this theorem for the diagonal cofactors of the Kirchhoff matrix.

A version that involves all cofactors of the Laplacian and the column Laplacian matrices can

be found in [30]. We do not describe multiple analogues of the matrix-tree theorem here.

By definition, L has the form L = D − W, where W is the nonnegative matrix of arc

weights and D is the diagonal matrix ensuring the zero row sums of L. Therefore, by

Geršgorin’s theorem, the real part of each nonzero eigenvalue of L is positive. Thus, L

is a singular M-matrix (see, e.g., [7, Theorem 4.6 in Chapter 6]). One of the consequences

is that all the principal minors of L are nonnegative. Fiedler and Sedláček [25] obtained an

interpretation of all principal minors of the Laplacian matrix in terms of spanning forests:
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Theorem 2. For any J ⊆ {1, . . . , n}, detL(J |J ) = w(F→∗J ) holds, where F→∗J is the

set of in-forests for which J is the set of roots.

Later this theorem was formulated and proved in [11]. Its special case with undirected

graphs and |J | = 2 was discovered and employed earlier in the theory of electrical networks

(see, e.g., [55]). Fiedler and Sedláček stated their result for the column Laplacian matrix

and out-forests. Generally, to get interpretations for the minors of the column Laplacian

matrix L′(Γ), it suffices to observe that for the digraph obtained from Γ by the reversal of all

arcs, the Laplacian matrix coincides with K(Γ) = L′ T (Γ) and the in-forests are in a weight

preserving correspondence with the out-forests of Γ.

Let

ϕ(λ) = det(λI + L) =

n∑

k=0

cn−k λk (13)

be the characteristic polynomial of −L and let σk be as defined in (2).

Proposition 2. In (13), ck = σk, k = 0, . . . , n.

In view of Theorem 2, this proposition follows from the fact that ck is equal to the sum

of the k×k principal minors of L. In the case of undirected unweighted multigraphs, Propo-

sition 2 is due to Kelmans [36, 37], who was probably the first [35] to study the Laplacian

characteristic polynomial (see also discussion in [52, p. 42] and [21, Sections 1.2, 1.5], and

[8, Theorem 7.5]); some extensions are given in [4, the last statement on p. 236] and [20,

Theorem 2]. An alternative representation for the coefficients of the Laplacian characteristic

polynomial can be found in [26].

Since σk = 0 if and only if k > n − d (k = 0, 1, . . .), Proposition 2 implies

Corollary 1. The multiplicity of 0 as the eigenvalue of L is d.

Another immediate consequence of Proposition 2 is

Corollary 2. σk =
∑

J : |J |=k

∏

j∈J

λj , k = 0, . . . , n,

where λ1, . . . , λn are the eigenvalues of L and J are the subsets of {1, . . . , n}.

Chen [17, p. 313, Problems 4.14 and 4.16] proposed an extension of the matrix-tree the-

orem to additional minors of the Laplacian matrix and Chaiken [10] gave a similar graph

interpretation to all minors of L′. Moon [53] obtained a more general expansion which ap-

plies to all minors of arbitrary matrices; Chaiken’s theorem and a number of W.K. Chen’s

expansions follow from his result as special cases. Minoux [51] generalized Chaiken’s theo-

rem to semirings and Bapat et al. [5] to mixed graphs (where each arc is either directed or

undirected). Other useful graph interpretations of minors and determinants are given in [45].

We do not quote these results here, but we employ Chaiken’s formulation [10] of the all

minors matrix tree theorem in the proof of a matrix-forest theorem in the following section.
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4 Another matrix-forest theorem

The following theorem [13, 15] provides expressions for the forest matrices Q and J (see (8)

and (10)) in terms of the cofactors and the determinant of I + L, where I is the identity

matrix.

Theorem 3. Q = adj(I + L) and σ = det(I + L). Thus, J = (I + L)−1.

For the properties of (I + L)−1, see [15, 16, 46, 47].

It was mentioned in [15] that a quick way to prove the matrix-forest theorem is to employ

the all minors matrix tree theorem, more specifically, to apply the first formula (without

number) on page 328 in [10]. Below we give a complete inference of Theorem 3 from the all

minors matrix tree theorem. Note that a self-contained proof of the matrix-forest theorem

for unweighted multigraphs can be found in [62]. Another inference based on some results

of [36, 37, 25, 45] was given in [13] for the case of weighted multidigraphs and multigraphs.

Undirected and unweighted analogies of Theorem 3 have been presented in [46, 47] (with the

proof based on Chaiken’s theorem) and [14].

In the following proof of Theorem 3, we employ a standard trick which enables one to

reduce many novel statements about forests to known statements about trees or forests.

Versions of this trick have been used in many papers, e.g., [4, 10, 12, 17, 28, 33, 34, 38, 46,

47, 56].1 We formalize it by

Definition 3. Let Γ be a weighted digraph. The digraph Γ̂ with vertex set V (Γ̂) = V (Γ) ∪

{0}, arc set E(Γ̂) = E(Γ)∪ {(j, 0) : j ∈ V (Γ)}, the weights of arcs in E(Γ̂)∩E(Γ) the same

as for Γ, and w((j, 0)) = 1, j ∈ V (Γ), will be called the ground extension of Γ.2

Observation 1. Let Γ̂ be the ground extension of Γ. Let U = I + L(Γ), L̂ = L(Γ̂). Then

for any I,J ⊆ V (Γ), U(I | J ) = L̂(I ∪{0} | J ∪{0}) holds.

By virtue of Observation 1, if one has expressions for all minors of the Laplacian matrices

L (say, those provided by the all minors matrix tree theorem), then expressions for all minors

of matrices I + L are got gratis. The following lemma establishes a correspondence between

the forests in Γ and some forests in Γ̂. The lemma is formulated here in a form useful for

expressing all minors of I + L.

Lemma 1. Consider I = {i1, . . . , ik} ⊆ V (Γ), J = {j1, . . . , jk} ⊆ V (Γ), 0 ≤ k ≤ n, and the

set of in-forests F→∗∩
(

k
∩

u=1
F iu→∗ju

)
in Γ. Then there exists a weight preserving one-to-one

correspondence between this set and the set F̂→∗
IJ of in-forests F ∈ F̂0→∗0 ∩

(
k
∩

u=1
F̂ iu→∗ju

)
in

Γ̂ such that the F ’s consist of exactly k + 1 trees.

Proof of Lemma 1. Let F ∈ F→∗∩
(

k
∩

u=1
F iu→∗ju

)
. To define the corresponding forest in

F̂→∗
IJ , consider the replica F ′ of F in Γ̂ and attach the arcs (r, 0) to it, where the r’s are the
1Note that one more expedient is to identify the roots of all trees in a forest, which converts the forest

into a tree [21, 25, 36, 37, 54, 13].
2In [34] Γ̂ is called the cone of Γ.
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roots of F ′ that are not in J . The resulting in-forest consists of exactly k+1 trees and belongs

to F̂→∗
IJ . Conversely, for any F̂ ∈ F̂→∗

IJ , consider its restriction to V (Γ) as the corresponding

forest of Γ. Obviously, this correspondence is one-to-one and the corresponding forests share

the weight. 2

Proof of Theorem 3. Consider the ground extension Γ̂ of Γ. By Observation 1, if

U = I + L(Γ), U ij is the (i, j) entry of adjU, and L̂ = L(Γ̂), then

U ij = (−1)i+j det U({j} | {i}) = (−1)i+j det L̂({0, j} | {0, i}). (14)

Let F̂
0→∗0,i→∗j
(2) be the set of in-forests F ∈ F̂0→∗0 ∩ F̂ i→∗j that consist of two trees.

Denoting by inv{0 → 0, i → j} the number of violations of monotonicity in the two-element

correspondence {0 → 0, i → j}, which is obviously zero, and using the all minors matrix tree

theorem [10, 53], we get

det L̂({0, j} | {0, i}) = (−1)|{k∈V (Γ) : k<j}| + |{k∈V (Γ) : k<i}|
∑

F∈F̂
0→∗0,i→∗j

(2)

(−1)inv{0→0,i→j}w(F )

= (−1)j+i−2w(F̂
0→∗0,i→∗j
(2) ). (15)

In the first passage, we used the fact that F̂ i→∗0 = ∅.

Lemma 1 implies w(F̂
0→∗0,i→∗j
(2) ) = w(F i→∗j), so, from (14) and (15), we get

U ij = (−1)2i+2j−2w(F i→∗j) = w(F i→∗j) = qij .

By Observation 1, Theorem 1, and Lemma 1, detU = det L̂({0} | {0}) = w(F̂0→∗0
(1) ) =

w(F→∗) = σ (cf. [33, Eq. (37)] and [34, 7.2 and 7.3]). This completes the proof. 2

Remark 1. Obviously, the positivity of arc weights is needed for the last statement of

Theorem 3 only; the first two statements are preserved for digraphs with arbitrary arc

weights.

Remark 2. Note that the cofactors and the determinant of I + L, in the case of an un-

weighted undirected graph G, have been expressed in [28] in terms of spanning trees and

2-forests in the ground extension of G (for the case of weighted graphs, cf. [39, Theorem 2.3]).

Ref. [28] also discusses the idea of using graph invariants related to (I + L)−1 in the study

of the graph isomorphism problem. We surmise that the forest matrices Qk also have some

potential in this respect.

It is easily seen that I + τL with τ ≥ 0 are nonsingular M-matrices, so their inverses are

nonnegative. In the next section, the following parametric matrix-forest theorem [1] will be

helpful:

Theorem 3′. For any τ ∈ R, Q(τ) = adj(I + τL) and σ(τ) = det(I + τL). Thus, for any

τ ≥ 0, J(τ) = (I + τL)−1.

To prove this theorem, it suffices to apply Theorem 3 to the weighted digraph Γ′(τ) that

differs from Γ in the weights of arcs only: for all i, j = 1, . . . , n, w′
ij(τ) = τwij . By Remark 1,

the nonnegativity of τ is needed for the last statement of Theorem 3′ only.
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5 A method for calculating Q1, . . . , Qn−d

We first show that Q1, . . . , Qn−d are the matrix coefficients in the polynomial expansion of

adj(λI + L).

Proposition 3. adj(λI + L) =

n−d∑

k=0

Qk λn−k−1.

Proof of Proposition 3. If λ = 0, then the right-hand side is zero whenever d > 1 and it

reduces to Qn−1 when d = 1 (we put λ0 ≡ 1). This is equal to adj(λI + L) by Theorem 1.

For any λ 6= 0, let τ = λ−1. Using Theorem 3′ we get

adj(λI + L) = adjλ(I + τL) = λn−1Q(τ) = λn−1
n−d∑

k=0

Qk τk =

n−d∑

k=0

Qk λn−k−1. 2 (16)

Proposition 3 underlies an easy algorithm for calculating Q1, . . . , Qn−d and σ1, . . . , σn−d .

Proposition 4. For any k = 0, 1, . . . ,

Qk+1 = (−L)Qk + σk+1I, (17)

σk+1 =
tr(LQk)

k + 1
. (18)

Proof of Proposition 4. Since, by Proposition 3, Q0, . . . , Qn are the matrix coefficients

in the polynomial form of adj(λI + L), where λI + L is the characteristic matrix of −L and,

by Proposition 2, σ0, . . . , σn are the coefficients of the characteristic polynomial of −L, the

equations [27, §3 of Chapt. 4] Qk+1 = σk+1I − LQk, k = 0, 1, . . . , take place.

To prove (18), it suffices to take the traces on the left and on the right of (17) and use

the fact that

trQk = (n − k)σk, k = 0, 1, . . . ,

which holds since every in-forest with k arcs has n − k roots. 2

Note that, by virtue of Propositions 2 and 3, the recurrent application of (18) and (17)

starting with Q0 = I coincides with the Leverrier-Faddeev algorithm [23, 27] applied to

calculate the characteristic polynomial of −L.

Consider now a few corollaries to Proposition 4. First, in what follows we will need a

recurrence formula for the row stochastic matrices Jk. It is:

Jk+1 =
σk

σk+1

(−L)Jk + I, k = 0, . . . , n − d − 1. (19)

Second, the matrices LQk prevailing in Proposition 4 have a noteworthy graph interpre-

tation. Let Γk be the digraph of in-forests with k arcs of Γ, i.e., the digraph on vertex set

V (Γk) = V (Γ) whose matrix of arc weights results from Qk by putting zeros on the main

diagonal. In other words, (i, j) ∈ E(Γk) whenever j 6= i and qk
ij > 0; qk

ij is the weight of such

arc. Evidently, Γ1 = Γ.

Proposition 5. LQk is the Laplacian matrix of Γk+1, k = 0, 1, . . . .

9



Proof of Proposition 5. By Proposition 4, LQk = σk+1I − Qk+1, so the off-diagonal

entries of LQk coincide with those of L(Γk+1). To complete the proof, note that every row

sum of LQk is zero, since every row sum of both σk+1I and Qk+1 is σk+1 . 2

Finally, Proposition 4 provides a recurrent formula for the Laplacian matrices Lk :=L(Γk):

Lk+1 = L
(
−Lk +

trLk

k
I
)
, k = 1, 2, . . . .

We are going to discuss the application of digraphs Γk to the analysis of Γ elsewhere.

6 Forest matrices as polynomials in the Laplacian

matrix

It follows from Proposition 4 that the forest matrices Qk, Q, and Q(τ) are polynomials in L.

As a corollary, the powers of L are linear combinations of Q0, . . . , Qn−d .

First, it is straightforward to prove

Proposition 6. Qk =

k∑

i=0

σk−i(−L)i, k = 0, 1, . . . .

These expressions are closely related to the characteristic polynomial of −L (13) which,

by Proposition 2, can be represented as ϕ(λ) = (...((σ0 λ +σ1)λ + σ2)λ + . . . + σn−1)λ + σn .

To find ϕ(λ), one can successively calculate ϕ0(λ) = σ0, ϕ1(λ) = σ0 λ + σ1, ϕ2(λ) = (σ0 λ +

σ1)λ + σ2, . . . , ϕn(λ) = ϕ(λ). It is easily seen now that Qk = ϕk(−L), k = 0, . . . , n.

Corollary 3. The matrices Qk, k = 0, 1, . . . , commute with all matrices with which L

commutes, in particular, with L, Q(τ), and each other.

By Theorems 3 and 3′, Q = adj(I + L) and Q(τ) = adj(I + τL). Proposition 6, (8), and

(11) provide a polynomial form of Q and Q(τ).

Proposition 7.

Q =

n−d∑

k=0

sn−d−k(−L)k = adj(I + L),

Q(τ) =

n−d∑

k=0

sn−d−k(τ) (−τL)k = adj(I + τL), (20)

where si and si(τ) are defined in (5) and (6).

By (16), adj(λI + L) = λn−1Q(τ), where λ 6= 0 and τ = 1/λ. Combining this with (20)

and (6), we obtain

Corollary 4. adj(λI + L) =

n−d∑

k=0

s′n−d−k(λ) (−L/λ)k,

where s′i(λ) =
∑i

j=0 σj λn−j−1, i = 0, . . . , n − d, and λ 6= 0.

Corollary 4 and Proposition 3 can be considered as dual representations of adj(λI + L).

It follows from Proposition 6 that the powers of L are linear combinations of Q0, . . . , Qn−d,

but the coefficients are more complicated than before.
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Proposition 8. For m = 0, 1, . . . , (−L)m =
m∑

k=0

αk Qm−k holds, where α0 = 1,

αk =
∑

(p1,...,p
k
):

∑
ip

i
=k

(−1)
∑

pi

(∑
pi

)
!

∏(
pi!

)
∏

σ
pi

i , k = 1, . . . , m, (21)

pi are nonnegative integers, and all sums and products in (21), except for the first sum, range

from i = 1 to k.

A nice property of these linear combinations is that the coefficients αk do not depend on

m (similarly to Proposition 6). For instance,

L = −(Q1 −σ1 I),

L2 = Q2 −σ1 Q1 −(σ2 −σ2
1)I,

L3 = −(Q3 −σ1 Q2 −(σ2 −σ2
1)Q1 −(σ3 −2σ2 σ1 +σ3

1)I),

L4 = Q4 −σ1 Q3 −(σ2 −σ2
1)Q2 −(σ3 −2σ2 σ1 +σ3

1)Q1

− (σ4 −2σ3 σ1 −σ2
2 + 3σ2 σ2

1 − σ4
1)I.

Proof of Proposition 8. We first prove, by induction on m, the identity

(−L)m =

m∑

k=0

α′
k Qm−k (22)

with α′
0 = 1 and

α′
k =

∑

(β(1),...,β(n
β
)):

∑
β(i)=k

∏(
−σβ(i)

)
, k = 1, . . . , m, (23)

where β(i) are positive integers, nβ is the variable number of entries in (β(1), . . . , β(nβ)),

and the unmarked sum and product range from i = 1 to nβ .

For the basis of induction, observe that (−L)0 = I = α′
0 Q0 . Let (22)–(23) be valid for

(−L)0, . . . , (−L)m−1. By Proposition 6,

(−L)m = α′
0 Qm −

m−1∑

i=0

σm−i(−L)i. (24)

Substituting (22) in the right-hand side of (24) and interchanging the two sums we obtain:

(−L)m = α′
0 Qm +

m∑

k=1

α(m)
k Qm−k,

where

α(m)
k =

k∑

i=1

(−σi)α′
k−i, k = 1, . . . , m.

It is easily seen that α(m)
k = α′

k, k = 1, . . . , m, thereby the induction step has succeeded.

Next, for an arbitrary positive integer k, consider any vector (β(1), . . . , β(nβ)) with posi-

tive integer entries such that
∑nβ

i=1 β(i) = k (see (23)). Let pj = |{i : β(i) = j}| , j = 1, . . . , k.

Classifying the set of vectors (β(1), . . . , β(nβ)) such that
∑

β(i) = k by the equality of the

corresponding vectors (p1, . . . , pk), we see that every such a class contains
(∑

pi

)
!/

∏(
pi!

)

members. This implies that αk = α′
k, k = 0, 1, . . . , (cf. (21) and (23)) and thus, completes

the proof.
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7 The matrix of maximum in-forests

In this section, we study some properties of the normalized matrix J̃ = Jn−d of maximum

in-forests. Let µλ(A) stand for the multiplicity of λ as the eigenvalue of a square matrix A.

Proposition 9. (i) LJ̃ = J̃L = LQn−d = Qn−d L = 0;

(ii) J̃Jk = Jk J̃ = J̃ , k = 0, . . . , n − d;

(iii) J̃ is a projection: J̃2 = J̃ ;

(iv) rank J̃ = µ1(J̃) = tr J̃ = d; µ0(J̃) = n − d.

Proof of Proposition 9. (i) Putting k = n−d in (17) and using the facts that Qn−d+1 = 0

and σn−d+1 = 0, we get LQn−d = 0. The other identities follow from Corollary 3 and (9).

(ii) Multiplying (19) by J̃ and using item (i) and Corollary 3, we get the required state-

ment, whose special case is (iii).

(iv) Each maximum in-forest of Γ has d roots, hence tr Qn−d = d σn−d and tr J̃ =

tr(σ−1
n−dQn−d) = d. Since J̃ is idempotent, rank J̃ = µ1(J̃) = tr J̃ , so µ0(J̃) = n − d. 2

The following connection between the spectra of L and L + αJ̃, α ∈ C, will be used in

the sequel.

Proposition 10. (i) The spectrum of L + αJ̃ consists of all nonzero eigenvalues of L with

their multiplicities and α with µα(L + αJ̃) = d. (ii) L + αJ̃ is nonsingular whenever α 6= 0.

Proof of Proposition 10. (i) Let p(λ) = σ−1
n−d

∑n−d

i=0 σn−d−i(−λ)i. By Proposition 6,

J̃ = σ−1
n−dQn−d = p(L), so L + αJ̃ = L + αp(L). Therefore, by [27, Theorem 3 in Chapt. 4],

all eigenvalues of L + αJ̃ are λ′
i = λi +αp(λi), where λi, i = 1, . . . , n, are all eigenvalues of

L with their multiplicities. By (i) of Proposition 9, LJ̃ = 0 = Lp(L), whence λp(λ) is an

annihilating polynomial for L. Therefore, for each λi, a nonzero eigenvalue of L, we have

p(λi) = 0, hence λ′
i = λi . Otherwise, if λi = 0, then λ′

i = α, since p(0) = 1 by definition

of p(λ). Finally, by Corollary 1, µ0(L) = d, thus µα(L + αJ̃) = d. This implies (ii). 2

Proposition 11. J̃ = lim
τ→∞

J(τ) = lim
τ→∞

(I + τ L)−1.

Proof of Proposition 11. Using Theorem 3′ and the definition (12) of J(τ), we have

lim
τ→∞

(I + τ L)−1 = lim
τ→∞

J(τ) = lim
τ→∞

(n−d∑

k=1

σk τk
)−1 n−d∑

k=1

Qk τk

= lim
τ→∞

(n−d∑

k=1

σk τk−n−d
)−1 n−d∑

k=1

Qk τk−n−d = σ−1
n−dQn−d = J̃ .
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8 L and J̃ as “complementary” linear transformations

For a complex matrix A, let R(A) and N (A) denote its range and null space, respectively.

Recall that the index of a square matrix A, indA, is the smallest nonnegative integer k

for which rank(Ak+1) = rank(Ak). The eigenprojection3 at 0 of A [57] or, for short, the

eigenprojection of A [58] is the idempotent matrix B such that R(B) = N (Aν) and N (B) =

R(Aν), where ν = indA. In other words, B is the projection on N (Aν) along R(Aν). The

eigenprojection is unique, because an idempotent matrix is uniquely determined by its range

and null space (see, e.g., [6, p. 50]).4

Since LJ̃ = 0 (Proposition 9), we have R(L∗) ∩ R(J̃) = {0}, where L∗ = LT . Similarly,

J̃L = 0 implies R(J̃∗)∩R(L) = {0}. Consequently, by [44, Theorem 11], L and J̃∗ are rank

additive, i.e., rank(L + J̃∗) = rankL + rank J̃∗. Corollary 1 implies that rankL ≥ n − d,

whereas, by Proposition 9, rank J̃∗ = d. Since rank(L + J̃∗) ≤ n, we have rankL = n − d

and rank(L + J̃∗) = n. Now LJ̃ = J̃L = 0 implies N (L) = R(J̃) and N (J̃) = R(L).

Furthermore, by Proposition 10, rank(L + J̃) = n, hence L and J̃ are rank additive. It

follows now from [44, Theorem 11] that R(L) ∩ R(J̃) = {0}. Since R(J̃) = N (L), we get

R(L) ∩ N (L) = {0}, which, by [6, p. 165], implies indL = 1. The latter fact together

with R(J̃) = N (L), N (J̃) = R(L), and J̃2 = J̃ imply that J̃ is the eigenprojection of L

(alternatively, this follows from Proposition 11 and [48, Theorem 3.1]). We proved

Proposition 12. (i) L + J̃∗ is nonsingular.

(ii) rankL = n − rank J̃ = n − d.

(iii) N (L) = R(J̃) and R(L) = N (J̃).

(iv) R(L) ∩R(J̃) = {0}.

(v) indL = 1.

(vi) J̃ is the eigenprojection of L.

It is known [57, p. 194], [59, Theorem 7.a.3] that for every finite homogeneous Markov

chain with a transition matrix P, the long run transition matrix P∞ = lim
k→∞

1
k

k−1∑
t=0

P t is the

eigenprojection of P at 1, which is the eigenprojection of I − P.5 On the other hand, I − P

is exactly the Laplacian matrix L of the weighted digraph without loops whose arc weights

are equal to the corresponding transition probabilities. Therefore J̃ , the eigenprojection of

L, coincides with P∞. The fact that P∞ coincides with the normalized matrix of maximum

3The eigenprojections are also called principal idempotents [66, 32].
4Note that for every A ∈ Cn×n s.t. ind A = ν and every idempotent matrix B, each of the following

conditions is equivalent to B being the eigenprojection of A:

(i) R(B) = N (Aν) and R(B∗) = N ((A∗)ν) [57];

(ii) AνB = BAν = 0 and rank Aν + rank B = n [67, 69].

(iii) AB = BA and A + αB is nonsingular for all α 6= 0 [41] (cf. (ii) of Proposition 10);

(iv) AB = BA, A + αB is nonsingular for some α 6= 0, and AB is nilpotent [41];

(v) AB = BA, AB is nilpotent, and AU = I − B = V A for some U, V ∈ Cn×n [31];

(vi) B commutes with all matrices commuting with A, AB is nilpotent, and B 6= 0 if A is singular [40];

Moreover, the eigenprojection of A is I − AAD, where AD is the Drazin inverse of A (see Section 9).
5This also follows from Meyer’s Theorem 2.2 in [49]. Indeed, by this theorem, P∞ =I − (I −P )(I −P )#,

where (I − P )# is the group inverse of I − P, and the right-hand side is the eigenprojection of I − P, as

mentioned in the next section.

13



in-forests of the digraph corresponding to a Markov chain is the so called Markov chain tree

theorem [42, 43]. Thus, item (vi) of Proposition 12 provides an immediate proof of this

theorem.

By virtue of Proposition 9, every nonzero column of J̃ (or Qn−d) is an eigenvector of L that

corresponds to the zero eigenvalue. Moreover, it follows from N (L) = R(J̃) (Proposition 12)

that the nonzero columns of J̃ span the null space of L. Since, by (16), Q(τ) is proportional

to adj(λI − (−L)) at λ = τ−1, Q(τ) can be used to generate some eigenvectors of L that

correspond to its nonzero eigenvalues. For completeness, we give a proof of this fact.

Proposition 13. Let λi 6= 0 be an eigenvalue of L. Then every nonzero column of Q(−λ−1
i )

is an eigenvector of L that corresponds to λi .

Proof of Proposition 13. Let X = λiI − L. Then detX = 0. Using Theorem 3′ and the

fact that for every square matrix Y, Y adjY = (detY )I holds, we get

(λiI − L)Q(−λ−1
i ) = X adj(I − λ−1

i L) = λ1−n
i X adjX = λ1−n

i (detX)I = 0.

This implies the desired statement.

9 Forest matrices and generalized inverses of L

The Moore-Penrose generalized inverse A+ of a rectangular complex matrix A is the unique

matrix X such that

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

For an arbitrary square matrix A, its Drazin inverse, AD, is the unique matrix X satis-

fying the equations

Aν+1X = Aν , XAX = X, AX = XA,

where ν = indA. If ν = 0, then AD = A−1; if ν ≤ 1, then AD is referred to as the group

inverse, A#, i.e., the unique matrix X such that

AXA = A, XAX = X, AX = XA.

As applied to the Laplacian matrices of graphs, the generalized inverses were considered in

connection with the analysis of electrical networks (providing “resistance distance”), Markov

chains, and some preference aggregation problems (more specifically, estimation from paired

comparisons), in constructing geometrical representations of graphs (with applications to

chemistry, social networks, etc.), in control, cluster analysis, and parallel computing. There

is a huge literature on generalized inverses within the last years. For multiple representations

of the Drazin inverse, see, e.g., [68, 19, 18].

In this section, we present a few relations between the L# and the forest matrices and

one representation for L+. In the case of symmetric L, where L# = L+, some of these

expressions are given in [16].6

6For symmetric L, interesting representations for L# = L+ were proposed in [24], [39, Theorem 2.2], and,

in case of weighted trees, in [39] and [3, Theorem 3]. In [22, Theorem 3] a combinatorial interpretation of

the Campbell-Youla inverse (the symmetric generalized inverse with the zero diagonal) of L is given.
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For an arbitrary square matrix A, AAD is the unique projection on R(Aν) along N (Aν)

[6, p. 173]. Then I − AAD is the projection on N (Aν) along R(Aν). Therefore, I − AAD is

the eigenprojection of A [57, 58]. Combining this with items (v) and (iv) of Proposition 12,

we obtain

Proposition 14. J̃ = I − LL#.

The fact that J̃ is the eigenprojection of L helps interpret, in terms of in-forests, the

expressions of generalized inverses of L that involve the eigenprojection of L.

Proposition 15.

(i) For any α 6= 0, L# = (L + α J̃)−1 − α−1 J̃ , whence L# = lim
|α|→∞

(L + α J̃)−1.

(ii) For any α 6= 0, L# = (L + α J̃)−1(I − J̃).

(iii) L# =
σn−d−1

σn−d

(
Jn−d−1 − J̃

)
.

(iv) L# = lim
τ→∞

τ
(
J(τ) − J̃

)
.

Remarks on Proposition 15. (i), (iii), and (iv) were presented in [2]. (i) results by

substituting J̃ for the eigenprojection in the expression of group inverse employed in [50,

p. 150] (for its proof see [60, Theorem 4.2]; related expressions appeared in [49, Theorem 5.5]

and [58, last line on p. 646], where ‘+’ must be replaced by ‘−’). (ii) is obtained by the

same substitution in the representation of Drazin inverse given in [40] (the case with α = 1

appeared in [58]) or by multiplying (i) by LL# = I − J̃ . In view of Propositions 2 and 3,

(iii) follows from the expression of Drazin inverse discovered independently by Hartwig [32,

Eq. (13)] and Gower [29, Theorem 1].

The matrices L + αJ̃ are the “complementary perturbations” [50] of L. Matrices of this

kind are important for the analysis of M-matrices and singular systems of equations. In

particular, a matrix A with eigenprojection B and nonpositive off-diagonal entries is an M-

matrix if and only if for some c > 0, (A + αB)−1 is nonnegative when α ∈ (0, c) [50]. If A

is an M-matrix, then (A + αB)−1, α ∈ (0, c), make up a class of nonnegative nonsingular

commuting weak inverses for A [50]. (L + αJ̃)−1 can be represented as a linear combination

of forest matrices using (i) and (iii) of Proposition 15:

(L + αJ̃)−1 =
σn−d−1

σn−d

(
Jn−d−1 + β J̃

)
,

where β =
σn−d

ασn−d−1
− 1. This throws some light on the nonnegativity of (L + αJ̃)−1: if

α ∈ (0,
σn−d

σn−d−1
) then (L + αJ̃)−1 is a positive combination of Jn−d−1 and J̃ . Based on

this, we termed (L + αJ̃)−1 the matrices of dense in-forests of Γ. These and the inverse

“uniform diagonal perturbations” (L+αI)−1 can serve to measure proximity between digraph

vertices [2]. Note in this connection that by [60, Corollary 4.4], (L+αJ̃)−1
ij > 0 for all α > 0

sufficiently small if and only if vertex j is accessible from i in Γ, and the same is true for

(L + αI)−1
ij . By Theorem 3′, (L + αI)−1 is proportional to J(τ) with τ = 1/α.

We conclude with one expression for the Moore-Penrose inverse of L.

Consider the matrix Z := L + J̃∗ which is nonsingular by Proposition 12. Using the

identity LJ̃ = 0 (Proposition 9), we get (Z∗)
−1

Z−1 = (ZZ∗)−1 = (J̃∗J̃ +LL∗)−1.
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Proposition 16 [2]. L+ = L∗(ZZ∗)
−1

= L∗(J̃∗J̃ +LL∗)−1.

One method to prove this is to check the conditions in the definition of Moore-Penrose

inverse by direct computation using Proposition 9 and the facts that (ZZ∗)−1 commutes

with LL∗ and J̃∗J̃ and that LL∗(ZZ∗)
−1

and J̃∗J̃ (ZZ∗)
−1

are symmetric [2]. Alternatively,

Proposition 16 can be proved by employing the Penrose formula A+ = A∗(AA∗)+, the fact

that (AA∗)+ = (AA∗)# (since AA∗ is Hermitian) and an expression of (AA∗)# such as those

given in (i) and (ii) of Proposition 15.

10 A concluding remark

It is instructive to compare the “Laplacian graph mathematics” we touched upon in this

paper with the corresponding results on the adjacency characteristic matrix, see, e.g., [21,

Sections 1.4, 1.9.1, 1.9.5 and others] and the articles by Kasteleyn and Ponstein cited therein,

[61], and so on. This comparison suggests that the Laplacian mathematics is based on trees

in the same sense as the “adjacency graph mathematics” is based on routes and circuits.

We mean that a number of expressions related with the adjacency characteristic matrix can

be interpreted in terms of routes and circuits, whereas the counterparts of these expressions

related with the Laplacian characteristic matrix involve spanning forests for their interpre-

tation.
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