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Figure 1. Four non-interseting lattie paths with steps (0; 1) and (1; 0)IntrodutionA lattie path is a polygonal line in the disrete Cartesian plane Z2. However, inthis thesis we will only be onerned with lattie paths with steps (1; 1) and (1;�1)or with steps (1; 0) and (0; 1). A family of lattie paths is alled non-interseting,if no two paths have a lattie point in ommon. In Figure 1 an example for suh afamily is shown.Families of non-interseting lattie paths are objets of great importane inombinatoris: They an be used to ount plane partitions and di�erent sorts oftableaux, and thus may be used to proof ertain determinantal formulas for Shurfuntions and sympleti and orthogonal haraters, see [4, 5, 6℄. In statistial me-hanis non-interseting lattie paths are known as `viious walkers', and are usedto desribe wetting and melting proesses, see [3℄. In ommutative algebra familiesof non-interseting lattie paths an be used to desribe the Hilbert series of deter-minantal and PfaÆan rings, see [8℄. In this thesis we present new results in thesethree areas.The �rst hapter is titled \A `nie' bijetion for a ontent formula for skewsemistandard Young tableaux". In this hapter we give a bijetive proof of a formularelating the generating funtions for Young tableaux and the generating funtion forreverse semistandard Young tableaux to eah other.As already mentioned before, there is a lose onnetion between semistandardYoung tableaux and families of non-interseting lattie paths. In the following wewill explain these matters briey. Let � = (�1; �2; : : : ; �r) and � = (�1; �2; : : : ; �s)be two weakly dereasing sequenes of non-negative integers suh that s < r and�i < �i for i 2 f1; 2; : : : ; sg. For onveniene we set �i = 0 for i > s. The shape�=� is an array of r rows of boxes, suh that the ith row ontains �i � �i boxesand the �rst box of the ith row is plaed in olumn �i + 1, for i 2 f1; 2; : : : ; rg.
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a. a semistandard Young tableau ofshape (4; 4; 4; 3)=(2; 2; 1) b. the orresponding family of non-interseting lattie pathsFigure 2.A semistandard Young tableau of shape �=� is a �lling of these boxes with non-negative integers suh that the entries are weakly inreasing along rows and stritlyinreasing along olumns. An example for a semistandard Young tableau an befound in Figure 2.a. Similarly, a reverse semistandard Young tableau of shape �=�is a �lling of the boxes with non-negative integers suh that the entries are weaklydereasing along rows and stritly dereasing along olumns.Let P be a semistandard Young tableaux of shape �=�, where � = (�1; �2; : : : ; �r)and � = (�1; �2; : : : ; �s). For any shape � let �0 denote the transposed shape, i.e.,�0i is the length of the ith olumn of �. De�ne ai = 2i�2�0i and ei = 2i�2�0i+m+1for i 2 f1; 2; : : : ; �1g, where m is the maximum of all entries in P . Now we translateP into a family of �1 lattie paths starting at (0; ai) and terminating at (m+ 1; ei),i 2 f1; 2; : : : ; �1g, as follows: The jth path does a (1;�1)-step for the ith timeafter P�0j+i;j steps, all the other steps are (1; 1). Beause eah row of P is weaklyinreasing, this family of paths is non-interseting. An example of this bijetion isshown in Figure 2.Similarly, reverse semistandard Young tableaux an also be interpreted as fami-lies of non-interseting lattie paths. Thus, the formula we prove in Chapter 1 anbe translated into a formula relating the generating funtions of ertain families ofnon-interseting lattie paths.In fat, the bijetion relating semistandard Young tableaux and families of non-interseting lattie paths desribed above was used in [12℄ to �nd an asymptotiapproximation of the number of ertain families of non-interseting lattie paths.In the seond hapter, \Asymptoti analysis of viious walkers with arbitrary end-3



points", we generalize these results. However, we have to use a di�erent method.`Viious walkers' are families of p non-interseting lattie paths with steps (1; 1)and (1;�1) that have given starting points (0; 2ai), i 2 f1; 2; : : : ; pg and end some-where on the line x = m. In this setting, m is alled the length of the walkers.Thus the question arises how to ount families of non-interseting lattie paths.This task is aomplished by the famous Lindstr�om-Gessel-Viennot Theorem, seeTheorem 2.1 on page 22 or [6, Corollary 2℄. This theorem redues the enumerationof families of non-interseting lattie paths to the evaluation of a determinant, whoseentry in row i and olumn j is the number of lattie paths from the ith starting tothe jth end point.Originally, this result was disovered by Lindstr�om in 1973, in the ontext ofmatroid theory, see [13℄. It is a urious oinidene that his result was independentlyredisovered in the 1980s in three di�erent ommunities at about the same time: instatistial physis by Fisher [3, Setion 5.3℄, in order to apply it to the analysis ofviious walkers as a model of wetting and melting, in ombinatorial hemistry byJohn and Sahs [9℄ and Gronau, Just, Shade, She�er and Wojiehowski [7℄ inorder to ompute Pauling's bond order in benzenoid hydroarbon moleules, and inenumerative ombinatoris by Gessel and Viennot [5, 6℄ in order to ount tableauxand plane partitions. Finally, it should be mentioned that the same idea appearedeven earlier in work by Karlin and MGregor [10, 11℄ in a probabilisti framework.Using the Lindstr�om-Gessel-Viennot Theorem, some knowledge of ordinary andodd orthogonal haraters, the Poisson summation Theorem and some limit asesof Selberg's integral formula, we �nd an asymptoti approximation of the numberof viious walkers as desribed above, as their length m tends to in�nity. Also, weobtain suh an asymptoti approximation if the walkers are not allowed to go belowthe x-axis.The last two hapters of this thesis are onerned with the Hilbert series ofladder determinantal rings. These rings are very important objets in ommutativealgebra and Shubert alulus, see [2, 8, 1℄. Thus, it is a natural question to askfor a `nie' formula for their Hilbert series. It is known that the Hilbert series of aladder determinantal ring equalsP`�0 h`z`=(1�z)d, where, d is the Krull dimensionof the ring and h` denotes the number of families of non-interseting lattie pathswith steps (1; 0) and (0; 1), and ` north-east turns. Here, a north-east turn is a pointof the lattie path whih is the end point of a (0; 1)-step and the starting point of a(1; 0)-step.It is the aim of Chapter 3 to present a formula for the generating funtion men-tioned above. Naturally, we would like to have a determinantal expression similar tothat in the Lindstr�om-Gessel-Viennot Theorem. In order to obtain suh a formula,it helps to know how the latter theorem is proved. The key ingredient is the follow-ing involution on the set of families of paths whih ontain two paths that interset:Let (P1; P2; : : : ; Pn) be suh a family of paths and suppose that Pi and Pj are twopaths that interset in a lattie point x. Let ~Pi be the path whih is idential toPi up to x but then follows Pj, and, similarly, let ~Pj be the path whih is identialto Pj up to x but then follows Pi. For k 62 fi; jg, let ~Pk = Pk. Clearly, mapping4



(P1; P2; : : : ; Pn) to ( ~P1; ~P2; : : : ; ~Pn) is an involution.However, if we want to ount families of non-interseting lattie paths with agiven total number of north-east turns, we annot apply this involution, beause(P1; P2; : : : ; Pn) and ( ~P1; ~P2; : : : ; ~Pn) may have a di�erent total number of north-eastturns. The solution is to onsider so alled two-rowed arrays, as de�ned in Setion 3of Chapter 3, that are more general than paths.In fat, the main idea of the proof of the Lindstr�om-Gessel-Viennot Theoremremains valid: The involution as de�ned in Setion 4.4 on page 50 is still based onthe idea of swithing tails, but, as mentioned before, ats on two-rowed arrays.The last hapter, \The h-vetor of a ladder determinantal ring ogenerated by2 � 2 minors is log-onave", is also onerned with families of non-intersetinglattie paths with steps (1; 0) and (0; 1) that have a given number of north-eastturns. In fat, in the ase of ladder determinantal rings, the `h-vetor' is exatly thegenerating funtionP`�0 h`z` desribed above. It was onjetured that this h-vetoris log-onave, i.e., it satis�es hi�1hi+1 � h2i for i 2 f1; 2; : : : ; pg. Corollary 4.6 onpage 73 provides an aÆrmative answer in the simplest ase, where there is only asingle path. It remains a hallenging problem to prove the onjeture for arbitrarilylarge families of non-interseting lattie paths.Referenes[1℄ Shreeram Abhyankar, Enumerative ombinatoris of Young tableaux, MarelDekker, New York, 1988.[2℄ Sara Billey and V. Lakshmibai, Singular loi of Shubert varieties, Birkh�auserBoston In., Boston, MA, 2000. MR 2001j:14065[3℄ Mihael E. Fisher, Walks, walls, wetting, and melting, Journal of StatistialPhysis 34 (1984), no. 5-6, 667{729. MR 85j:82022[4℄ Markus Fulmek and Christian Krattenthaler, Lattie path proofs for determi-nantal formulas for sympleti and orthogonal haraters, Journal of Combina-torial Theory, Series A 77 (1997), no. 1, 3{50. MR 98h:05178[5℄ Ira Gessel and G�erard Viennot, Binomial determinants, paths, and hook lengthformulae, Adv. in Math. 58 (1985), no. 3, 300{321. MR 87e:05008[6℄ Ira Martin Gessel and Xavier G�erard Viennot, Determinants, paths, andplane partitions, http://www.s.brandeis.edu/~ira/papers/pp.pdf (1989),36 pages.[7℄ H.-D. O. F. Gronau, W. Just, W. Shade, Petra She�er, and J. Wojiehowski,Path systems in ayli direted graphs, Proeedings of the International Con-ferene on Combinatorial Analysis and its Appliations (Pokrzywna, 1985),vol. 19, 1987, pp. 399{411 (1988). MR 89i:05128 5
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Chapter 1A `nie' bijetion for a ontent formulafor skew semistandard Young tableauxAbstratBased on Sh�utzenberger's evauation and a modi�ation of jeu de taquin,we give a bijetive proof of an identity onneting the generating funtion ofreverse semistandard Young tableaux with bounded entries with the generat-ing funtion of all semistandard Young tableaux. This solves Exerise 7.102b of Rihard Stanley's book `Enumerative Combinatoris 2'.1 IntrodutionThe purpose of this artile is to present a solution for Exerise 7.102 b of RihardStanley's book `Enumerative Combinatoris 2' [5℄. There, Stanley asked for a `nie'bijetive proof of the identityXR reverse SSYTof shape �=�with Rij � a+ �i � i qn(R) = � XP SSYTof shape �=� qn(P )� � Y�2�=�(1� qa+(�)); (1)where a is an arbitrary integer suh that a + (�) > 0 for all ells � 2 �=�.1 Here,and in the sequel, we use notation de�ned below:De�nition 1.1. A partition is a sequene � = (�1; �2; : : : ; �r) with �1 � �2 � � � � ��r > 0, for some r.The Ferrers diagram of a partition � is an array of ells with r left-justi�edrows and �i ells in row i. Figure 1.a shows the Ferrers diagram orresponding to(4; 3; 3; 1). We label the ell in the ith row and jth olumn of the Ferrers diagram of� by the pair (i; j). Also, we write � 2 �, if � is a ell of �.A partition � = (�1; �2; : : : ; �s) is ontained in a partition � = (�1; �2; : : : ; �r),if s � r and �i � �i for i 2 f1; 2; : : : ; sg.The skew diagram �=� of partitions � and �, where � is ontained in �, onsistsof the ells of the Ferrers diagram of � whih are not ells of the Ferrers diagram1In fat, this is the orreted version of the identity originally given in [5℄, to be found athttp://www-math.mit.edu/~rstan/e. Stanley took it from [1℄, Theorem 3.1, where the formulais stated inorretly, too.
7



3 323 04a. Ferrers diagram b. skew Ferrers diagram . reverse SSYTFigure 1.of �. Figure 1.b shows the skew diagram orresponding to (4; 3; 3; 1)=(2; 2; 1). Theontent (�) of a ell � = (i; j) of �=� is j � i.Given partitions � and �, a tabloid of shape �=� is a �lling T of the ells of theskew diagram �=� with non-negative integers. T� denotes the entry of T in ell �.The norm n(T ) of a tabloid T is simply the sum of all entries of T . The ontentweight w(T ) of a tabloid T isP�2�=� T� � (a + (�)), where a is a given integer suhthat a+ (�) > 0 for all ells � 2 �=�.A semistandard Young tableau of shape �=�, short SSYT, is a tabloid P suh thatthe entries are weakly inreasing along rows and stritly inreasing along olumns.A reverse semistandard Young tableau of shape �=� is a tabloid R suh that theentries are weakly dereasing along rows and stritly dereasing along olumns. InFigure 1. a reverse SSYT of shape (4; 3; 3; 1)=(2; 2; 1) is shown.2 A Bijetive proof of Identity 1In fat, we will give a bijetive proof of the following rewriting of Identity 1:XP SSYTof shape �=� qn(P ) = � XR reverse SSYTof shape �=�with Rij � a+ �i � i qn(R)� � Y�2�=� 11� qa+(�)= X(R;T )R reverse SSYTof shape �=�with Rij � a+ �i � i,T tabloidof shape �=� qn(R)qw(T ):
So all we have to do is to set up a bijetion that maps SSYT'x P onto pairs(R; T ), where R is a reverse SSYT with Rij � a + �i � i and T is an arbitrarytabloid, suh that n(P ) = n(R) + w(T ).The bijetion onsists of two parts. The �rst step is a modi�ation of a mappingknown as `evauation', whih onsists of a speial sequene of so alled `jeu de taquinslides'. An in depth desription of these proedures an be found, for example, inBrue Sagan's Book `The symmetri group' [4℄, Setions 3.9 and 3.11. We use
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evauation to bijetively transform the given SSYT P in a reverse SSYT Q whihhas the same shape and the same norm as the original one.The seond step of our bijetion also onsists of a sequene of { modi�ed {jeu de taquin slides and bijetively maps a reverse SSYT Q onto a pair (R; T ) asdesribed above. This proedure is very similar to bijetions disovered by ChristianKrattenthaler, proving Stanley's hook-ontent formula. [2, 3℄0 11 71 4 92 9 9 , 9 97 49 1 12 1 0 , 0B� 4 32 24 1 02 1 0 ; 0 00 01 0 20 0 1 1CAn(:) = 43 n(:) = 43 n(:) = 19; w(:) = 24Figure 2.A omplete example for the bijetion an be found in the appendix. There wehose a = 6 and map the SSYT P of shape (4; 4; 4; 3)=(2; 2; 1) on the left of Figure 2to the reverse SSYT Q in the middle of Figure 2, whih in turn is mapped to the pairon the right of Figure 2, onsisting of a reverse SSYT R, where the entry of the ell� = (i; j) is less or equal to a+�i� i, and a tabloid T so that n(Q) = n(R)+w(T ).In the algorithm desribed below we will produe a �lling of a skew diagram stepby step, starting with the `empty tableau' of the given shape.Theorem 2.1. The following two maps de�ne a orrespondene between SSYT'xand reverse SSYT'x of the same shape �=� and the same norm:) Given a SSYT P of shape �=�, produe a reverse SSYT Q of the same shapeand the same norm as follows:Let Q be the empty tableau of shape �=�.WHILE there is a ell of P whih ontains an entryLet e be the minimum of all entries of P . Among all ells � with P� = e,let � = (i; j) be the ell whih is situated most right.WHILE � has a bottom or right neighbour in P that ontains an entryDenote the entry to the right of � by x and the entry below � by y.We allow also that there is only an entry to the right or below � andthe other ell is missing or empty.If x < y, or there is no entry below �, then replaee xy by x ey ;and let � be the ell (i; j + 1). 9



Otherwise, if x � y, or there is no empty to the right, replaee xy by y xe ;and let � be the ell (i + 1; j).END WHILE.Put Q� equal to e and delete the entry of the ell � from P . Note thatells of P whih ontain an entry still form a SSYT. In the proof below,� will be alled the ell where the jeu de taquin slide stops.END WHILE.( Given a reverse SSYT Q of shape �=�, produe a SSYT P of the same shapeand the same norm as follows:Let P be the empty tableau of shape �=�.WHILE there is a ell of Q whih ontains an entryLet e be the maximum of all entries of Q. Among all ells � with Q� = e,let � = (i; j) be the ell whih is situated most left.Set P� = e and delete the entry of the ell � from Q.WHILE � has a top or left neighbour in P that ontains an entryDenote the entry to the left of � by x and the entry above � by y.We allow also that there is only an entry to the left or above � andthe other ell is missing or empty.If x > y, or there is no entry above �, then replaeyx e by ye x ;and let � be the ell (i; j � 1).Otherwise, if x � y, or there is no entry to the left, replaeyx e by ex y ;and let � be the ell (i� 1; j).END WHILE.The ells of P whih ontain an entry now form a SSYT. In the proofbelow, � will be alled the ell where the jeu de taquin slide stops.END WHILE.
10



�2 �1
�01 �02Figure 3.Proof. Note that what happens during the exeution of the inner loop of ) (() is ajeu de taquin forward (bakward) slide performed on Q into the ell �, see Setion 3.9of [4℄.First we have to show that ) is well de�ned. I.e., we have to hek that aftereah jeu de taquin forward slide, after the entry e in the ell � is deleted from P ,the ells of P whih ontain an entry form a SSYT as stated in the algorithm. Thisfollows, beause after either type of replaement in the inner loop the only possibleviolations of inrease along rows and strit inrease along olumns in P an onlyinvolve e and the entries to its right and below. When the jeu de taquin forwardslide is �nished, � is a bottom-right orner of P , hene after deleting the entry in �no violations of inrease or strit inrease an our.Next we show that ) indeed produes a reverse SSYT. In fat, we even showthat the tabloid de�ned by the ells of Q whih have been �lled already, is a reverseSSYT at every stage of the algorithm.Clearly, every ell of Q is �lled with an entry exatly one. Furthermore, atthe time the ell � is �lled, the ells in Q to the right and to the bottom of � { ifthey exist { are �lled already, otherwise � would not be a bottom-right orner ofP . Beause the sequene of entries hosen is monotonially inreasing, rows andolumns of Q are dereasing.So it remains to show that the olumns of Q are in fat stritly dereasing.Suppose that �1 and �2 are ells both ontaining the same minimal entry e, and �1is right of �2.When the jeu de taquin forward slide in ) is performed into the ell �1, theentry e desribes a path from �1 to the ell where the slide stops, whih we willdenote by �01. Similarly, we have a path from �2 to a ell �02.Now suppose �01 is in the same olumn as, but below �02, as depited in Figure 3.Clearly, in this ase the two paths would have to ross and we had the followingsituation:
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First, (the star is a plaeholder for an entry we do not know)� z y would be replaed by � yz  :In this situation, z would have to be smaller then y.Then, when the jeu de taquin forward slide into the ell �2 is performed, thefollowing situation would arise at the same four ells: yz � would have to be replaed by y z � :But this annot happen, beause then y would have to be stritly smaller than z.It an be shown in a very similar manner that ( indeed produes a SSYT. Weleave the details to the reader.Finally, we want to prove that ( is inverse to ). Suppose that in ), a jeude taquin forward slide into the ell � ontaining the entry e is performed on P .Suppose that the slide stopped in �0, Q�0 is set to e and the entry in �0 is deletedfrom P . Among the entries of Q, e is maximal, beause smallest entries are hosen�rst in ). Furthermore, among those ells of Q ontaining the entry e, the ell �0is most left. This follows, beause the tabloid de�ned by the ells of Q whih havebeen �lled already, is a reverse SSYT, and the paths de�ned by the jeu de taquinslides annot ross, as we have shown above.It is straightforward to hek that in this situation the jeu de taquin bakwardslide into �0 performed on P in ( stops in the original ell �. By indution we �ndthat ( is inverse to ).The seond step of the bijetion is just as easy:Theorem 2.2. The following two maps de�ne a orrespondene between reverseSSYT'x Q to pairs (R; T ), where R is a reverse SSYT with Rij � a + �i � i and Tis an arbitrary tabloid, so that n(Q) = n(R) + w(T ), Q, R and T being of shape�=�:) Given a reverse SSYT Q of shape �=�, produe a pair (R; T ) as desribedabove as follows:Set R = Q and set all entries of T equal to 0.WHILE there is a ell � = (i; j) suh that R� > a + �i � iLet e be maximal so that there is a ell � with R� � �a + (�)� = e.Among all ells � with R� ��a+(�)� = e, let � = (i; j) be the ell whihis situated most bottom. Set R� = e.WHILE e < R(i;j+1) or e � R(i+1;j)
12



Denote the entry to the right of � by x and the entry below � by y.We allow also that there is only a ell to the right or below � and theother ell is missing.If x� 1 > y, or there is no ell below �, then replaee xy by x�1 ey ;and let � be the ell (i; j + 1).Otherwise, if y + 1 � x, or there is no ell to the right, replaee xy by y+1 xe ;and let � be the ell (i + 1; j).END WHILE.Inrease T� by one.END WHILE.( Given a pair (R; T ) as desribed above, produe a reverse SSYT Q of shape�=� as follows:Set Q = R.WHILE there is a ell � = (i; j) suh that T� 6= 0Let e be minimal so that there is a ell � with Q� = e and T� 6= 0.Among these ells � let � = (i; j) be the ell whih is situated most right.Derease T� by one.WHILE e+ a+ (�) > Q(i;j�1) or e+ a + (�) � Q(i�1;j)Denote the entry to the left of � by x and the entry above � by y.We allow also that there is only a ell to the left or above � and theother ell is missing.If y > x+ 1, or there is no ell above �, then replaeyx e by ye x+1 ;and let � be the ell (i; j � 1).
13



Otherwise, if x � y � 1, or there is no ell to the left, replaeyx e by ex y�1 ;and let � be the ell (i� 1; j).END WHILE.Inrease Q� by a+ (�).END WHILE.Remark. Beause of the obvious similarity to jeu de taquin slides, we will all whathappens in the inner loop of ) (() a modi�ed jeu de taquin (bakward) slide into� performed on R (Q).Lemma 2.3. The two maps 2.2.) and 2.2.( are well de�ned. I.e. the tabloid Rprodued by ) is indeed a reverse SSYT with Rij � a + �i � i and the tabloid Qprodued by ( is indeed a reverse SSYT. Also, the equation n(Q) = n(R) + w(T )holds.Furthermore, the following statement is true: Suppose that ) performs a mod-i�ed jeu de taquin slide on R into a ell �1 with R�1 = e. After this, suppose thatanother modi�ed jeu de taquin slide on R into a ell �2 with the same entry e isperformed. Let �01 and �02 be the ells where the slides stop. Then �01 is left of �02 or�01 = �02. A orresponding statement holds for Algorithm 2.2.(.Proof. First of all, we have to prove that Algorithm 2.2.) terminates. We requiredthat a + (�) > 0 for all ells � , whih implies that every time when we replae theentry in ell � by e (see the beginning of the outer loop of the algorithm) we dereasemax�=(i;j)(R� � a � �i + i). It is easy to see that this maximum is never inreasedin the subsequent steps of the algorithm.It is easy to hek that after every type of replaement within the modi�ed jeude taquin slides, the validity of the equation n(Q) = n(R) + w(T ) is preserved.So it remains to show that after every modi�ed jeu de taquin slide of ), theresulting �lling R of �=� is in fat a reverse SSYT: We have that Q���a+(�)� = eis maximal at the very left of �=�, beause rows are dereasing in Q. Therefore,when Q� > a+ �i� i, as required for the exeution of the outer loop of ), we havee = Q� � �a+ (�)� > a+ �i � i� (a+ �i + 1� i) = �1;so e is non-negative. Furthermore, after either type of replaement during the mod-i�ed jeu de taquin slide, the only possible violations of derease along rows or stritderease along olumns an involve only the entry e and the entries to the right andbelow. By indution, R must be a reverse SSYT.
14



�1 �2
�02 �01

Figure 4.The seond statement of the lemma is shown with an argument similar to thatused in the proof of Theorem 2.1.When the jeu de taquin forward slide in ) is performed into the ell �1, theentry e desribes a path from �1 to the ell �01, where the slide stops. Similarly, wehave a path from �2 to �02. We onlude that, if �01 were stritly to the right of �02,that these paths would have to ross. (See Figure 4). Hene we had the followingsituation:First, (the star is a plaeholder for an entry we do not know)� ze x would be replaed by � zx�1 e :In this situation, x would have to be stritly smaller then z.Then, when the modi�ed jeu de taquin slide into �2 is performed, the followingsituation would arise at the same four ells:e zx�1 � would have to be replaed by x ze � :But this annot happen, beause then x would have to be at least as big as z is.The orresponding statement for Algorithm 2.2.( is shown similarly.Proof of Theorem 2.2. It remains to show, that ) and ( are inverse to eah other.This is pretty obvious onsidering the lemma:Suppose that the pair (R; T ) is an intermediate result obtained after a modi�edjeu de taquin slide into the ell �. After this, T�0 is inreased, where �0 is the ellwhere the slide stopped. Then the entry in �0 must be among the smallest entries ofR, so that T�0 6= 0, beause the sequene of e's in the ells hosen for the modi�edjeu de taquin slides is monotonially dereasing. If there is more than one ell �whih ontains a minimal entry of R and satis�es T� 6= 0, the lemma asserts thatthe right-most ell was the last ell hosen for the modi�ed jeu de taquin slide ).15



Hene it is ertain that the right-most ell ontaining a minimal entry as seletedbefore the modi�ed jeu de taquin slide of ( is �0. It is easy to hek, that thereplaements done in ( are exatly inverse to those in ). For example, supposethe following replaement is performed in ):ze xy is replaed by zx�1 ey :Then we had x�1 > y and, beause of stritly dereasing olumns, z > x. Therefore,in (, this is reversed and we end up with the original situation.Similarly, we an show that ) is inverse to (, too.Appendix A: Step by step exampleThis appendix ontains a omplete example for the algorithms desribed above fora SSYT of shape (4; 4; 4; 3)=(2; 2; 1) and a = 6.First the SSYT P on the left of Figure 2 is transformed into the reverse SSYTQ in the middle of Figure 2 using Algorithm 2.1.). The example has to be readin the following way: Eah pair (P;Q) in the table depits an intermediate resultof the algorithm. The ell of P ontaining the enirled entry is the ell into whihthe next jeu de taquin slide is performed. The jeu de taquin path is indiated bythe line in Q.
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P Q P Q0 11 71 4 92 9 9 7 999 41 12 1 01 14 71 9 92 9 0 9 99 7 41 12 1 01 74 91 92 9 10 99 97 41 12 1 04 79 912 9 1 10 9 9 97 41 12 1 04 79 992 1 11 0 9 97 49 1 12 1 04 79 99 1 12 1 0The inverse transformation ( of the reverse SSYT Q into the SSYT P an be traedin the same table, we only have to start at the right bottom, where the tableau Pis empty, and work our way upwards to the top left of the table. Note that the jeude taquin paths are the same.In the seond step of the bijetion, this reverse SSYT Q is mapped onto a pair(R; T ), where R is a reverse SSYT with Rij � a + �i � i, T is a tabloid andn(Q) = n(R) + w(T ). 7642 8 97 85 6 73 4 5a. a+ �i � i b. The tabloid withentries a+ (�)Figure 5.First, the algorithm initialises R to Q and sets all entries of T to zero. Using17



modi�ed jeu de taquin slides, R is then transformed into a reverse SSYT wherethe entries are bounded as required. First the algorithm heks whether there arestill ells in R whih are too large. For referene, we give the relevant bounds inFigure 5.a. Then, for seleting the ell into whih the modi�ed jeu de taquin slideis performed, we need to alulate R� � (a+ (�)). Again, for referene we displaythese values for eah ell in Figure 5.b.Eah row of the table below depits an intermediate result of Algorithm 2.2.).The ells ontaining the enirled entry are the ells into whih the modi�ed jeu detaquin slide will be performed, the ells ontaining the boxed entry indiate, wherethe last modi�ed jeu de taquin slide stopped. In the third olumn the jeu de taquinpath for the seleted ell is indiated.R T9 97 49 1 12 1 0 0 00 00 0 00 0 09 97 44 1 12 1 0 0 00 01 0 00 0 08 57 24 1 12 1 0 0 00 01 0 10 0 08 52 24 1 12 1 0 0 00 01 0 10 0 14 32 24 1 02 1 0 0 00 01 0 20 0 1

jeu de taquin path

Again, the inverse transformation ( an be traed in the same table, starting atthe bottom, moving upwards. Now the ells ontaining the boxed entry are theells into whih the next modi�ed jeu de taquin slide will be performed, the ellsontaining the enirled entry indiate where the last slide stopped. Of ourse, thejeu de taquin paths are the same as for ).
18



Appendix B: A omplete mathup for SSYT'x ofshape (3; 2)=(1) with norm 5, wherea = 2In the table below you �nd a omplete mathup for SSYT'x of shape (3; 2)=(1) withnorm 5 where a = 2. The �rst olumn ontains all SSYT'x of shape (3; 2)=(1)and norm 5. In the seond olumn, the orresponding reverse SSYT'x obtainedby evauation are displayed. Finally, in olumns three and four, the results ofAlgorithm 2.2.) an be found.This table was produed with a Common-LISP-implementation of the algorithmsabove, whih an be found on the author's homepage.2P Q R T0 00 5 , 5 00 0 , � 2 00 0 , 1 00 0 �0 01 4 , 4 01 0 , � 1 00 0 , 1 01 0 �0 02 3 , 3 02 0 , � 1 00 0 , 0 02 1 �0 10 4 , 1 04 0 , � 1 00 0 , 0 04 0 �0 11 3 , 3 01 1 , � 2 00 0 , 0 01 1 �0 12 2 , 2 02 1 , � 2 00 0 , 0 01 1 �0 20 3 , 2 03 0 , � 2 00 0 , 0 03 0 �0 21 2 , 2 21 0 , � 2 20 0 , 0 01 0 �1 10 3 , 1 13 0 , � 1 10 0 , 0 03 0 �1 11 2 , 2 11 1 , � 2 10 0 , 0 00 1 �2http://www.mat.univie.a.at/~rubey/bijet.lisp 19



P Q R T0 30 2 , 3 20 0 , � 1 00 0 , 0 10 0 �0 31 1 , 3 11 0 , � 1 10 0 , 0 01 1 �1 20 2 , 2 12 0 , � 2 10 0 , 0 02 0 �0 40 1 , 4 10 0 , � 1 10 0 , 1 00 0 �
Referenes[1℄ Sara C. Billey, William Jokush, and Rihard P. Stanley, Some ombinatorialproperties of Shubert polynomials, Journal of Algebrai Combinatoris 2 (1993),no. 4, 345{374.[2℄ Christian Krattenthaler, An involution priniple-free bijetive proof of Stanley'shook-ontent formula, Disrete Mathematis and Theoretial Computer Siene(1998), no. 3, 11{32.[3℄ , Another involution priniple-free bijetive proof of Stanley's hook-ontent formula, Journal of Combinatorial Theory, Series A (1999), no. 88, 66{92.[4℄ Brue E. Sagan, The symmetri group, Wadsworth & Brooks/Cole, Pai�Grove, California, 1987.[5℄ Rihard P. Stanley, Enumerative ombinatoris, vol. 2, Cambridge UniversityPress, 1999.
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Chapter 2Asymptoti analysis of viious walkerswith arbitrary endpointsAbstratWe derive asymptoti results for the number of on�gurations of viiousand 1-friendly walkers with given starting points and varying end points,both in absene and presene of a wall. Thus we extend previous results byKrattenthaler, Guttmann and Viennot [J. Phys. A: Math. Gen. 33 (2000),8835-8866℄. In our proofs we follow losely arguments given in the latterartile.1 IntrodutionA on�guration of viious walkers is a set of p non-interseting lattie paths in Z2with steps (1; 1) and (1;�1) that start at (0; 2ai) and terminate at (m; ei), whereei must have the same parity as m, for i 2 f1; 2; : : : ; pg. A family of lattie pathsis alled non-interseting, if no two paths have a lattie point in ommon. Theterm viious omes from the oneption, that two walkers that arrive at the samelattie site annihilate eah other. An example of suh a on�guration is depited inFigure 1.a.We will also onsider viious walkers that are additionally onstrained by animpenetrable wall, that is, non-interseting lattie paths that must not run below thex-axis. In this paper we derive exat asymptotis for the number of on�gurationsof viious walkers in both models, where the starting points are �xed but the endpoints may vary, see Theorems 3.1 and 4.1.As orollaries, we obtain asymptotis for the number of on�gurations of so alled1-friendly walkers. In this model, any number of paths may share an arbitrarynumber of lattie sites, but paths never hange sides. In Figure 1.b an example fora on�guration in this model an be found. For more information on the variousmodels the reader is referred to the introdution of [5℄. For the proofs, we loselyfollow derivations whih an be found in the latter artile.In Setion 3 we will be onerned with the ase where the lattie paths are un-onstrained. As ingredients for our alulations we will need the following: TheLindstr�om-Gessel-Viennot theorem on non-interseting lattie paths, some knowl-edge of Shur funtions (the irreduible haraters of speial linear groups), thePoisson summation theorem and Mehta's integral.
21
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a. a on�gurationof viious walkerswith a1 = 0, a2 =1, a3 = 3, a4 = 4and m = 6 b. a on�gurationof 1-friendly walk-ers with a1 = �2,a2 = 0, a3 = 2 anda4 = 4 . a family of non-interseting lattiepaths orrespond-ing to the on�gu-ration in b.Figure 1.The other ase, where the lattie paths must not go below the x-axis, is treated inSetion 4. There we additionally need the reetion priniple by D. Andr�e. Insteadof Shur funtions, we need the odd orthogonal haraters and instead of Mehta'sintegral we need an `orthogonal' analogue of Selberg's integral.In the following setion we will state these theorems and give appropriate refer-enes.2 IngredientsIn this setion we want to outline the method we use to obtain our results. Also,we list the various theorems we apply.First we onsider the problem of enumerating non-interseting lattie paths with�xed starting and end points. The Lindstr�om{Gessel{Viennot determinant reduesthis problem to the problem of ounting the number of single lattie paths with agiven starting and end point:Theorem 2.1 (Lindstr�om-Gessel-Viennot). Let A1; A2; : : : ; Ap andE1; E2; : : : ; Ep be lattie points, with the property that if 1 � i < j � p and1 � k < l � p, then any path from Ai to El must interset any path from Aj to Ek.Then the number of families (P1; P2; : : : ; Pp) of non-interseting lattie paths, wherePi runs from Ai to Ei, i 2 f1; 2; : : : ; pg, is given bydet1�i;j�p � jP (Aj ! Ei)j �; 22



where P (A! E) denotes the set of all lattie paths from A to E.Proof. See [6, Lemma 1℄ or [4, Corollary 2℄.In the ase of viious walkers without a wall, the number of lattie paths withsteps (1; 1) and (1;�1) from (0; 2a) to (m; e) is equal to � m12 (m�e)+a�. In the ase ofthe presene of a wall, the reetion priniple by D. Andr�e, see [1℄ or [2, page 22℄,shows that the number of lattie paths with steps (1; 1) and (1;�1) from (0; 2a) to(m; e) whih do not go below the x-axis equals � m12 (m�e)+a�� � m12 (m+e+2)+a�.Thus, returning to our problem, we obtain a sum over all possible end points ofthe lattie paths in question of the respetive Lindstr�om-Gessel-Viennot determi-nant. In a seond step, we extrat some fators from eah of the determinants, suhthat the leading term of the resulting determinant { viewed as polynomial in m { isroughly the numerator of a Weyl harater.Lemma 2.2. Let � = (�1; �2; : : : ; �p) be a partition, i.e. a weakly dereasing se-quene of non-negative integers. Then the Shur funtion s�(x1; x2; : : : ; xp) is de�nedby s�(x1; x2; : : : ; xp) = det1�i;j�p(x�i+p�ij )det1�i;j�p(xp�ij ) :We have s�(1; 1; : : : ; 1) = Y1�i<j�p �i � i� �j + jj � i anddet1�i;j�p(xi�1j ) = Y1�i<j�p(xj � xi):The odd orthogonal harater so�(x�11 ; x�12 ; : : : ; x�1p ; 1) is de�ned byso�(x�11 ; x�12 ; : : : ; x�1p ; 1) = det1�i;j�p(x�i+p�i+1=2j � x�(�i+p�i+1=2)j )det1�i;j�p(xp�i+1=2j � x�(p�i+1=2)j )and we haveso�(1; 1; : : : ; 1) = Y1�i<j�p �i � i� �j + jj � i Y1�i�j�p 2p+ 1 + �i � i+ �j � j2p+ 1� i� j anddet1�i;j�p(xi�1=2j � x�(i�1=2)j ) = pYj=1 x�p+1=2j (xj � 1) Y1�i<j�p(xi � xj)(1� xixj):Proof. See, for example, [3, (24.29) and (A.30 (ii))℄.After that, it remains to approximate a sum of the formXe1<e2<���<ep f(e1; e2; : : : ; ep)e�Ppj=1 e2j=m;where f is a polynomial in e1; e2; : : : ; ep. Applying the following lemma, whih relieson the Poisson summation theorem, we transform the sum into an integral: 23



Lemma 2.3. Let N be a non-negative integer and let b : N ! N be an arbitraryfuntion. Furthermore, let p : N ! R be a funtion of at most polynomial growth.Then, as m tends to in�nity,1Xk=b(m) p(k)e�k2=m = Z 1b(m) p(y)e�y2=mdy +O(1);where the onstant in the error term O(1) is independent of b.Proof. See [5, Lemma A1℄. Note, however, that the seond equality stated there isinorret in the ase of arbitrary b. However, we do not need this equality.Finally, the integral an be omputed by the following:Lemma 2.4. Let k be a omplex number with positive real part. ThenZ 1�1 : : :Z 1�1 Y1�i<j�p jxj � xij2k exp "�12 pXj=1 x2j# dx1dx2 : : : dxp= (2�)p=2 pYl=1 �(lk + 1)�(k + 1) : (1)Let k1; k2 and k3 be a omplex number with positive real part. ThenZ 1�1 : : :Z 1�1 pYj=1 jxjjk1+k3 Y1�i<j�p ��x2j � x2i ��k2 exp"�12 pXj=1 x2j# dx1dx2 : : : dxp= (21�k1�k3�)p=2 pYl=1 �(12 lk2 + 1)�(k1 + k3 + (l � 1)k2 + 1)�(12k2 + 1)�(12(k1 + k3 + (l � 1)k2) + 1) : (2)Proof. Proofs an be found in [7, (4.1) and Conjeture 6.1℄3 Viious walkers without a wallIn this setion we derive results for viious walkers with given starting points andvarying end points, where there is no wall restrition.Theorem 3.1. The number of on�gurations of p viious walkers with startingpoints (0; 2ai), i 2 f1; 2; : : : ; pg, where eah walker does m steps, is asymptotially2mp+p2=4m�p2=4+p=4��p=4Q1�i<j�p(aj � ai)Qp=2l=1(2l � 1)!� �1 +O(m�1=2(logm)3)� if p is even2mp+p2=4�1=4m�p2=4+p=4��p=4+1=4Q1�i<j�p(aj � ai)Q(p�1)=2l=1 (2l)!� �1 +O(m�1=2(logm)3)� if p is oddas m tends to in�nity. 24



If we set in the theorem above ai = 2i � 2 for i 2 1; 2; : : : ; p, we regain [5,Theorem 3℄, albeit with a worse error term:Corollary 3.2. The number of stars with p branhes of length m, i.e., on�gurationsof p viious walkers with starting points (0; 2i � 2), i 2 f1; 2; : : : ; pg, where eahwalker does m steps, is asymptotially2mp+p2=4m�p2=4+p=4��p=4 p=2Yl=1(2l � 2)!� �1 +O(m�1=2(logm)3)� if p is even2mp+p2=4�1=4m�p2=4+p=4��p=4+1=4 (p�1)=2Yl=1 (2l � 1)!� �1 +O(m�1=2(logm)3)� if p is oddas m tends to in�nity.Asymptotis for the model onerning 1-friendly walkers an also be deduedfrom Theorem 3.1: Given a family of non-rossing paths with starting points (0; 2ai),shifting the ith path by 2i � 2 units up, i 2 f1; 2; : : : ; pg, we obtain a family ofnon-interseting paths with starting points (0; ai + 2i � 2). An instane of thisorrespondene is depited in Figure 1.b and Figure 1.. It is obvious, that thisorrespondene is a bijetion. Thus, if we replae ai in Theorem 3.1 by ai + 2i � 2for i 2 1; 2; : : : ; p, we obtain asymptotis for the number of on�gurations of 1-friendly walkers with starting points (0; 2ai).In this vein, if we set ai = 4i� 4 for i 2 1; 2; : : : ; p in Theorem 3.1, we regain [5,Theorem 4℄:Corollary 3.3. The number of 1-friendly stars in the TK model with p branhesof length m, i.e., on�gurations of p viious walkers with starting points (0; 2i� 2),i 2 f1; 2; : : : ; pg, where eah walker does m steps, and any number of walkers mayshare an arbitrary number of steps, is asymptotially2mp+3p2=4�p=2m�p2=4+p=4��p=4 p=2Yl=1(2l � 2)!� �1 +O(m�1=2(logm)3)� if p is even2mp+3p2=4�p=2�1=4m�p2=4+p=4��p=4+1=4 (p�1)=2Yl=1 (2l � 1)!� �1 +O(m�1=2(logm)3)� if p is oddas m tends to in�nity.
25



Proof of Theorem 3.1. Given lattie points (0; 2a) and (m; e), where e has the sameparity as m, there are � m12 (m�e)+a� lattie paths with steps (1; 1) and (1;�1) from(0; 2a) to (m; e). Applying Theorem 2.1, we obtain the following expression forthe number of families of non-interseting lattie paths with starting points (0; 2ai),i 2 f1; 2; : : : ; pg, where eah path has m steps:X�m+2a1�e1<e2<���<ep�m+2apei�m mod 2 for i2f1;2;:::;pg det1�i;j�p�� mm�ej2 + ai�� :We now distinguish between two ases, depending on whether m is even or odd. Theomputations in both ases are, however, rather similar. Therefore, we arry themout in detail only for the �rst ase: If m is even we may replae eah summationindex ei by 2ei for i 2 f1; 2; : : : ; pg, and obtainX�m2 +a1�e1<e2<���<ep�m2 +ap det1�i;j�p�� mm2 + ai � ej��= X�m2 +a1�e1<e2<���<ep�m2 +ap pYj=1 m!(m2 + ap � ej)!(m2 + ap + ej)!!� det1�i;j�p��m2 + ap � ej�ap�ai �m2 + ap + ej�ap+ai� : (3)Here, xm denotes the falling fatorial power x(x � 1) : : : (x �m + 1). We will �ndasymptoti approximations for the produt and the determinant in the last lineof (3) separately.We start by onsidering the determinant. We are only interested in its leadingterm onsidered as a polynomial in m. However, it turns out to be neessary toregard the determinant as a polynomial in m and the e1; e2; : : : ; ep in a �rst stage.Trunation of eah entry of the original matrix to its leading terms yields the deter-
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minantdet1�i;j�p��m2 � ej�ap�ai �m2 + ej�ap+ai�=  pYj=1 �m2 � ej� �m2 + ej�!ap det1�i;j�p��m+ 2ejm� 2ej�ai�=  pYj=1 �m2 � ej� �m2 + ej�!ap det1�i;j�p �m + 2ejm� 2ej�i�1!� s(ap�p+1;ap�1�p+2;:::;a1) �m+ 2e1m� 2e1 ; m+ 2e2m� 2e2 ; : : : ; m+ 2epm� 2ep�=  pYj=1 �m2 � ej� �m2 + ej�!ap  Y1�i<j�p m + 2ejm� 2ej � m + 2eim� 2ei!� s(ap�p+1;ap�1�p+2;:::;a1) �m+ 2e1m� 2e1 ; m+ 2e2m� 2e2 ; : : : ; m+ 2epm� 2ep�=  pYj=1 �m2 � ej� �m2 + ej�!ap  Y1�i<j�p 4m(ej � ei)(m� 2ej)(m� 2ei)!� s(ap�p+1;ap�1�p+2;:::;a1) �m+ 2e1m� 2e1 ; m+ 2e2m� 2e2 ; : : : ; m+ 2epm� 2ep�= 2�2pap+2(p2)m(p2) pYj=1(m� 2ej)ap�p+1(m+ 2ej)ap! Y1�i<j�p(ej � ei)!� s(ap�p+1;ap�1�p+2;:::;a1) �m+ 2e1m� 2e1 ; m+ 2e2m� 2e2 ; : : : ; m+ 2epm� 2ep� :We now observe that both the original determinant in (3) and the result of thealulation above have degree 2pap, when onsidered as polynomials in m ande1; e2; : : : ; ep. Thus, the oeÆients of the leading terms must be equal, sine weomitted only terms of lower degree. Furthermore, both polynomials are divisible byQ1�i<j�p(ej � ei), whih implies that, onsidered as polynomials in m only, theirleading terms are equal, too.On ignoring again terms whose ontribution to the overall asymptotis are neg-ligible and applying Lemma 2.2, we obtain that the determinant in (3) is equalto 2�2pap+2(p2)m2pap�(p2)Q1�i<j�p(aj � ai)(ej � ei)Qp�1l=1 l! (1 +O(1=m)) : (4)Next, we want to �nd an asymptoti approximation for the produt in Equa-
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tion (3). If ej is positive, we havem!(m2 + ap � ej)!(m2 + ap + ej)!= m!�(m2 + ap)!�2 ejYl=1 1 + 2m(ap + l � ej)1 + 2m(ap + l)= m!�(m2 + ap)!�2 exp ��2e2jm +O(e3j=m2)�= 2m+2ap+ 12m�2ap� 12�� 12 (1 +O(1=m)) exp ��2e2jm � �1 +O(e3j=m2)� :If ej is negative, there is a similar alulation that leads to the same result. Now wesee that the dominant terms of the sum in (3) are those with �pm logm < e1 <e2 < � � � < ep < pm logm: For these terms, we obtainpYj=1 m!(m2 + ap � ej)!(m2 + ap + ej)!= 2p(m+2ap+ 12 )m�p(2ap+ 12 )�� p2 exp "� 2m pXj=1 e2j# �1 +O(m�1=2(logm)3)� : (5)However, if, for example, ep � pm logm, then exp h�2e2pm i � m�2 logm. Beause of1+O(e3j=m2) = O(m) for j 2 f1; 2; : : : ; pg and exp h�2e2jm i � 1 for j 2 f1; 2; : : : ; p� 1gwe obtainpYj=1 m!(m2 + ap � ej)!(m2 + ap + ej)! = O �2p(m+2ap+ 12 )m�p(2ap� 12 )�2 logm� :Sine the asymptoti approximation of the determinant as given in (4) is of polyno-mial order in m, these summands are asymptotially negligible.
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Substituting Equations (4) and (5) into (3) we obtainX pYj=1 m!(m2 + ap � ej)!(m2 + ap + ej)!!� det1�i;j�p��m2 + ai � ej + 1�ap�ai �m2 � ai + ej + 1�ap+ai�=X 2p(m+2ap+ 12 )m�p(2ap+ 12 )�� p2 exp "� 2m pXj=1 e2j#� 2�2pap+2(p2)m2pap�(p2)Q1�i<j�p(aj � ai)(ej � ei)Qp�1l=1 l!� �1 +O(m�1=2(logm)3)�= 2p(m+p� 12 )m� p22 �� p2Q1�i<j�p(aj � ai)Qp�1l=1 l!�X Y1�i<j�p(ej � ei)! exp "� 2m pXj=1 e2j#� �1 +O�m�1=2(logm)3�� ;
(6)

where the sum is over �pm logm � e1 < e2 < � � � < ep � pm logm. In fat, wemay extend the range of summation and sum over �pm logm � e1 � e2 � � � � �ep � pm logm, sine the expression inside the sum is zero if any two ei should bethe same. It remains to �nd an asymptoti approximation of this sum. To ahievethis, we apply Lemma 2.3 suessively for j = p; p�1; : : : ; 1 to eah of the individualsums. We start with the sum over ep:pm logmXep=ep�1  Y1�i<p(ep � ei)! exp ��2e2pm �= 1Xep=ep�1 Y1�i<p(ep � ei)! exp ��2e2pm �� (1 + O (1=m))=  Z 1ep�1  Y1�i<p(ep � ei)! exp ��2e2pm � dep +O(1)!� (1 +O (1=m)) :This integral is of at most polynomial growth in the variables e1; e2; : : : ; ep�1, so wean apply Lemma 2.3 again and iterate. The result is that we obtainZ  Y1�i<j�p(ej � ei)! exp "� 2m pXj=1 e2j# de1de2 : : : dep � (1 +O (1=m))
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where the integral is over �1 < e1 � e2 � � � � � ep <1. Now we substitute pm2 xifor ei, and introdue { seemingly superuous { absolute values:�pm2 �(p+12 ) Z  Y1�i<j�p jxj � xij! exp"�12 pXj=1 x2j# dx1dx2 : : : dxp� (1 +O (1=m)) :With the absolute values, the integrand is invariant under permutations of the xi.Thus, we an rewrite the last line as�pm2 �(p+12 ) 1p!Z 1�1 : : :Z 1�1 Y1�i<j�p jxj � xij! exp "�12 pXj=1 x2j# dx1dx2 : : : dxp� (1 +O (1=m)) :Using (1) of Lemma 2.4 with k = 12 gives�pm2 �(p+12 ) 1p! (2�)p=2 pYl=1 �(l=2 + 1)�(3=2) � (1 +O (1=m)) :Combining this expression with the last line of Equation (6) we obtain the laimedexpression for even m. The omputation for odd m is similar. We leave the detailsto the reader.4 Viious walkers with a wallIn this setion we derive results for viious walkers with given starting points andvarying end points, where the walkers must not go below the x-axis.Theorem 4.1. The number of on�gurations of p viious walkers with startingpoints (0; 2ai), i 2 f1; 2; : : : ; pg, where eah walker does m steps and must not gobelow the x-axis, is asymptotially2mp+p2�p=2m�p2=2��p=2 p�1Yl=1 l!(2l + 1)! Y1�i<j�p(aj � ai) Y1�i�j�p(aj + ai + 1)� �1 +O(m�1=2(logm)3)�as m tends to in�nity.If we set in the theorem above ai = 2i � 2 for i 2 1; 2; : : : ; p, we regain [5,Theorem 8℄, albeit with a worse error term: 30



Corollary 4.2. The number of stars with p branhes of length m whih do not gobelow the x-axis, i.e., on�gurations of p viious walkers whih do not go below thex-axis with starting points (0; 2i � 2), i 2 f1; 2; : : : ; pg, where eah walker does msteps, is asymptotially2mp+p2�p=2m�p2=2��p=2 p�1Yl=1 l!!�1 +O(m�1=2(logm)3)�as m tends to in�nity.Similarly, if we set ai = 4i � 4 for i 2 1; 2; : : : ; p in Theorem 4.1, we regain [5,Theorem 9℄:Corollary 4.3. The number of1-friendly stars in the TK model with p branhes oflength m whih do not go below the x- axis, i.e., on�gurations of p viious walkerswhih do not go below the x-axis with starting points (0; 2i � 2), i 2 f1; 2; : : : ; pg,where eah walker does m steps, and any number of walkers may share an arbitrarynumber of steps, is asymptotially2mp+p2�3p=2m�p2=2��p=2 pYl=1 (l � 1)!(2l � 2)!(4l � 2)!(l + p� 1)!2 !�1 + O(m�1=2(logm)3)�as m tends to in�nity.More generally, if we replae ai in Theorem 4.1 by ai + 2i� 2 for i 2 1; 2; : : : ; p,we obtain asymptotis for the number of on�gurations of 1-friendly walkers withstarting points (0; 2ai).Proof of Theorem 4.1. Let (0; 2a) and (m; e) be lattie points suh that e has thesame parity as m. Applying the reetion priniple of Andr�e, we �nd that there are� m12 (m�e)+a�� � m12 (m+e+2)+a� lattie paths with steps (1; 1) and (1;�1) from (0; 2a) to(m; e), whih do not go below the x-axis.By Theorem 2.1, we obtain the following expression for the number of families ofnon-interseting lattie paths with starting points (0; 2ai), i 2 f1; 2; : : : ; pg, whihdo not go below the x axis and where eah path has m steps:X0�e1<e2<���<ep�m+2apei�m mod 2 for i2f1;2;:::;pg det1�i;j�p�� m12(m� ej) + ai�� � m12(m+ ej + 2) + ai�� :Again we have to distinguish between two ases, depending on whether m is evenor odd. Beause the omputations in both ases are rather similar, we arry themout in detail only for the ase where m is odd: We replae eah summation index ei
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by 2ei � 1 for i 2 f1; 2; : : : ; pg, and obtainX0�e1<e2<���<ep�m+12 +ap det1�i;j�p�� mm+12 + ai � ej�� � mm+12 + ai + ej��= X0�e1<e2<���<ep�m+12 +ap pYj=1 m!(m+12 + ap � ej)!(m+12 + ap + ej)!!� det1�i;j�p �m+ 12 + ap � ej�ap�ai �m� 12 + ap + ej + 1�ap+ai+1��m+ 12 + ap + ej�ap�ai �m� 12 + ap � ej + 1�ap+ai+1! ; (7)where, xm denotes the falling fatorial power x(x � 1) : : : (x � m + 1). We will�nd asymptoti approximations for the produt and the determinant in the last lineof (7) separately.We start by onsidering the determinant. We are only interested in its leadingterm onsidered as a polynomial in m. However, it turns out to be neessary toregard the determinant as a polynomial in m and the e1; e2; : : : ; ep in a �rst stage.Trunation of eah entry of the original matrix to its leading terms yields the deter-minantdet1�i;j�p��m2 � ej�ap�ai �m2 + ej�ap+ai+1 � �m2 + ej�ap�ai �m2 � ej�ap+ai+1�=  pYj=1 �m2 � ej��m2 + ej�!ap+ 12� det1�i;j�p �m + 2ejm� 2ej�ai+ 12 � �m + 2ejm� 2ej��ai� 12!=  pYj=1 �m2 � ej��m2 + ej�!ap+ 12� det1�i;j�p �m + 2ejm� 2ej�i� 12 � �m+ 2ejm� 2ej��i+ 12!� so(ap�p+1;ap�1�p+2;:::;a1) �m+ 2e1m� 2e1��1 ;�m + 2e2m� 2e2��1 ; : : : ;�m+ 2epm� 2ep��1 ; 1! :
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Applying Lemma 2.2 we obtain pYj=1 �m2 � ej��m2 + ej�!ap+ 12� det1�i;j�p �m+ 2ejm� 2ej�i� 12 � �m + 2ejm� 2ej��i+ 12!=  pYj=1 �m2 � ej�ap+ 12 �m2 + ej�ap+ 12 �m+ 2ejm� 2ej��p+ 12 ��m+ 2ejm� 2ej�� 1�!� Y1�i<j�p�m + 2ejm� 2ej � m + 2eim� 2ei��1� m + 2eim� 2ei m+ 2ejm� 2ej�!= 2�2pap+2p2�pmp2�p pYj=1 (m� 2ej) (m+ 2ej)!ap�p+1� pYj=1 ej! Y1�i<j�p(e2j � e2i )!We now observe that both the original determinant in (7) and the result of thealulation above have degree p(2ap + 1), when onsidered as polynomials in mand e1; e2; : : : ; ep. Thus, the oeÆients of the leading terms must be equal. Fur-thermore, both polynomials are divisible by �Qpj=1 ej��Q1�i<j�p(e2j � e2i )�, whihimplies that, onsidered as polynomials in m only, their leading terms are equal,too.On ignoring again terms whose ontribution to the overall asymptotis are neg-ligible we obtain that the determinant in (7) is equal to2�2pap+2p2�pm2pap�p2+pQ1�i<j�p(aj � ai)Q1�i�j�p(ai + aj + 1)Qp�1l=1 (2l + 1)! pYj=1 ej! Y1�i<j�p(e2j � e2i )! (1 +O(1=m)) : (8)Next, we want to �nd an asymptoti approximation for the produt in Equa-

33



tion (7). If ej is positive, we havem!(m+12 + ap � ej)!(m+12 + ap + ej)!= m!�(m+12 + ap)!�2 ejYl=1 1 + 2m(12 + ap � ej + l)1 + 2m(12 + ap + l)= m!�(m+12 + ap)!�2 exp ��2e2jm +O(e3j=m2)�= 2m+2ap+ 32m�2ap� 32�� 12 (1 +O(1=m)) exp ��2e2jm � �1 +O(e3j=m2)� :If ej is negative, there is a similar alulation that leads to the same result. Now wesee that the dominant terms of the sum in (7) are those with 0 < e1 < e2 < � � � <ep < pm logm: For these terms, we obtainpYj=1 m!(m+12 + ap � ej)!(m+12 + ap + ej)!= 2p(m+2ap+ 32 )m�p(2ap+ 32 )�� p2 exp "� 2m pXj=1 e2j# �1 +O(m�1=2(logm)3)� : (9)However, if ep � pm logm, then exp h�2e2pm i � m�2 logm. Beause of 1+O(e3j=m2) =O(m) for j 2 f1; 2; : : : ; pg and exp h�2e2jm i � 1 for j 2 f1; 2; : : : ; p� 1g we obtainpYj=1 m!(m+12 + ap � ej)!(m+12 + ap + ej)! = O �2p(m+ap�a1+ 12 )m�p(ap�a1� 12 )�2 logm� :Sine the asymptoti approximation of the determinant as given in (8) is of polyno-mial order in m, these summands are asymptotially negligible.
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Substituting Equations (8) and (9) into (7) we obtainX pYj=1 m!(m+12 + ap � ej)!(m+12 + ap + ej)!!� det1�i;j�p �m + 12 + ai � ej + 1�ap�ai �m� 12 � ai + ej + 1�ap+ai+1��m + 12 + ai + ej + 1�ap�ai �m� 12 � ai � ej + 1�ap+ai+1!=X 2p(m+2ap+ 32 )m�p(2ap+ 32 )�� p2 exp"� 2m pXj=1 e2j#� 2�2pap+2p2�pm2pap�p2+pQ1�i<j�p(aj � ai)Q1�i�j�p(ai + aj + 1)Qp�1l=1 (2l + 1)!� pYj=1 ej! Y1�i<j�p(e2j � e2i )!�1 +O(m�1=2(logm)3)�= 2pm+2p2+ p2m�p2� p2�� p2Q1�i<j�p(aj � ai)Q1�i�j�p(ai + aj + 1)Qp�1l=1 (2l + 1)!�X pYj=1 ej! Y1�i<j�p(e2j � e2i )! exp "� 2m pXj=1 e2j#� �1 +O�m�1=2(logm)3�� ; (10)where the sum is over 0 � e1 < e2 < � � � < ep � pm logm. In fat, we may extendthe range of summation and sum over 0 � e1 � e2 � � � � � ep � pm log, sine theexpression inside the sum is zero if any two ei should be the same. It remains to�nd an asymptoti approximation of this sum. To ahieve this, we apply Lemma 2.3suessively for j = p; p� 1; : : : ; 1 to eah of the individual sums. We start with thesum over ep:pm logmXep=ep�1 ep Y1�i<p(e2p � e2i )! exp ��2e2pm �= 1Xep=ep�1 ep Y1�i<p(e2p � e2i )! exp ��2e2pm �� (1 +O (1=m))=  Z 1ep�1 ep Y1�i<p(e2p � e2i )! exp ��2e2pm � dep +O(1)!� (1 +O (1=m)) :This integral is of at most polynomial growth in the variables e1; e2; : : : ; ep�1, so we35



an apply Lemma 2.3 again and iterate. The result is that we obtainZ  pYj=1 ej! Y1�i<j�p(e2j � e2i )! exp"� 2m pXj=1 e2j# de1de2 : : : dep� (1 + O (1=m))where the integral is over 0 < e1 � e2 � � � � � ep <1. Now we substitute pm2 xi forei, and introdue { seemingly superuous { absolute values:�pm2 �p2+p Z  pYj=1 jxjj! Y1�i<j�p ��x2j � x2i ��! exp "�12 pXj=1 x2j# dx1dx2 : : : dxp� (1 +O (1=m)) :With the absolute values, the integrand is invariant under permutations of the xi.Thus, we an rewrite the last line as�pm2 �p2+p 12pp!Z 1�1 : : : Z 1�1 pYj=1 jxjj! Y1�i<j�p ��x2j � x2i ��! exp "�12 pXj=1 x2j# dx1dx2 : : : dxp� (1 +O (1=m)) :Using (2) of Lemma 2.4 with k1 + k3 = 1 and k2 = 1 gives�pm2 �p2+p 12pp!�p=2 pYl=1 �(l + 1)�(3=2) � (1 +O (1=m)) :Combining this expression with the last line of Equation (10) we obtain the laimedexpression for odd m. The omputation for even m is similar, therefore we leave thedetails to the reader.Referenes[1℄ D. Andr�e, Solution direte du probl�eme r�esolu par M. Bertrand, Comptes RendusAad. Si. Paris 105 (1887), 436{437.[2℄ Louis Comtet, Advaned ombinatoris: The art of �nite and in�nite expansions,enlarged ed., D. Reidel Publishing Co., Dordreht, 1974. MR 57 #124[3℄ William Fulton and Joe Harris, Representation theory: A �rst ourse, readingsin mathematis, Springer-Verlag, New York, 1991. MR 93a:20069 36
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Chapter 3A determinantal formula for the Hilbertseries of one-sided ladder determinantalrings�Dediated to Shreeram AbhyankarAbstratWe give a formula that expresses the Hilbert series of one-sided ladder de-terminantal rings, up to a trivial fator, in form of a determinant. This allowsthe onvenient omputation of these Hilbert series. The formula follows froma determinantal formula for a generating funtion for families of noninterset-ing lattie paths that stay inside a one-sided ladder-shaped region, in whihthe paths are ounted with respet to turns.1 IntrodutionWork of Abhyankar and Kulkarni [1, 2, 20, 21℄, Bruns, Cona, Herzog, and Trung[4, 5, 6, 11℄ showed that the omputation of the Hilbert series of ladder determinantalrings (see Setion 2 for preise de�nitions and bakground) boils down to ountingfamilies of n noninterseting lattie paths with a given total number of turns ina ertain ladder-shaped region. Thus, this raises the question of establishing anexpliit formula for the number of these families of noninterseting lattie paths.In the ase that there is no ladder restrition, Abhyankar [1, (20.14.4)℄ has founda determinantal formula for the Hilbert series (atually not just one, but a greatnumber of them). As was made expliit in [6, 7, 21, 22℄, he thereby solved the afore-mentioned ounting problem in the ase of no ladder restrition. For diret proofsof the orresponding ounting formula see [14, 22℄. In the ase of one-sided ladders,Kulkarni [20℄ established an expliit solution to the ounting problem for n = 1 (i.e.,if there is just one path; this orresponds to onsidering one-sided ladder determi-nantal rings de�ned by 2� 2 minors). For arbitrary n, a determinantal formula forthe number of families of n noninterseting lattie paths in a one-sided ladder, wherethe starting and end points of the paths are suessive, was given by the �rst authorand Prohaska [17℄ (this orresponds to one-sided ladder determinantal rings de�nedby (n + 1) � (n + 1) minors), thereby proving a onjeture by Cona and Herzog[6, last paragraph℄. Finally, Ghorpade [9℄ has reently proposed a solution to theounting problem with more general starting and end points of the paths, even in the�together with Christian Krattenthaler 38



ase of two-sided ladders (this orresponds to two-sided ladder determinantal ringsogenerated by a given minor). This solution is based on an expliit formula for theounting problem for one path (i.e., n = 1), whih is then summed over a large setof indies with ompliated dependenies. Thus, this solution annot be regarded asequally satisfying as the determinantal formula of Abhyankar and the determinantalformula of the �rst author and Prohaska, whih are, however, only formulas in thease of a trivial ladder and in the ase of a one-sided ladder, respetively.The purpose of this paper is to provide a determinantal formula for the aseof one-sided ladders where the starting and end points are more general than in[17℄ (see Corollary 3.2; this orresponds to one-sided ladder determinantal ringsogenerated by a given minor). This formula must be onsidered as superior to theaforementioned one by Ghorpade [9℄ in this ase (i.e., the ase of one- instead of two-sided ladders). It speializes diretly to Abhyankar's formula [1, (20.14.4), L = 2,k = 2, with F (22)(m; p; a; V ) de�ned on p. 50℄ in the ase of no ladder restrition. Onthe other hand, if starting and end points are suessive, then it does not speializeto the formula in [17℄. (As already mentioned in Setion 7 of [17℄, it seems that theformula in [17℄ annot be extended in any diretion.)The entries in the determinant in our formula (5), respetively (6), are givenby ertain generating funtions for two-rowed arrays, whih are easy to ompute aswe show in Setion 5. (The onept of two-rowed arrays was introdued in [12, 18℄and developed to full power in [13, 14℄. Also the proof of the main theorem in [17℄depended heavily on two-rowed arrays.)In the next setion we reall the basi setup. In partiular, we de�ne ladderdeterminantal rings and state, in Theorem 2.1, the onnetion between the Hilbertseries of suh rings and the enumeration of noninterseting lattie paths with respetto turns. Our main result, the determinantal formula for the Hilbert series of one-sided ladder determinantal rings ogenerated by a given �xed minor, is stated inCorollary 3.2 in Setion 3. It follows from a determinantal formula for ountingnoninterseting lattie paths in a one-sided ladder with respet to turns, where thestarting and end points are allowed to be even more general than is needed forour main result. This ounting formula is stated in Theorem 3.1, and it is provedin Setion 4. In Setion 5 we show how to ompute the generating funtions fortwo-rowed arrays that appear in the determinant of our formula.2 Ladder determinantal rings and the enumera-tion of noninterseting lattie paths with re-spet to turnsLet X = (Xi;j)0�i�b; 0�j�a be a (b + 1) � (a + 1) matrix of indeterminates. Let= (Yi;j)0�i�b; 0�j�a be another (b + 1) � (a + 1) matrix with the property thatYi;j = Xi;j or 0, and if Yi;j = Xi;j and Yi0j0 = Xi0j0, where i � i0 and j � j 0, thenYs;t = Xs;t for all s; t with i � s � i0 and j � t � j 0. An example for suh a matrix39



Y , with b = 15 and a = 13 is displayed in Figure 1. (Note that there ould be 0's inthe bottom-right orner of the matrix also.) Suh a \submatrix" Y of X is alled aladder. This terminology is motivated by the identi�ation of suh a matrix Y withthe set of all points (j; b� i) in the plane for whih Yi;j = Xi;j. For example, the setof all suh points for the speial matrix in Figure 1 is shown in Figure 2. (It shouldbe apparent from omparison of Figures 1 and 2 that the reason for taking (j; b� i)instead of (i; j) is to take are of the di�erene in \orientation" of row and olumnindexing of a matrix versus oordinates in the plane.) In general, this set of pointslooks like a (two-sided) ladder-shaped region. If, on the other hand, we have eitherY0;0 = X0;0 or Yb;a = Xb;a then we all Y a one-sided ladder. In the �rst ase we allY a lower ladder, in the seond an upper ladder. Thus, the matrix in Figure 1 is anupper ladder. 0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB� X15;0X15;1X15;2X15;3X15;4X15;5X15;6X15;7X15;8X15;9X15;10X15;11X15;12X15;13X14;0X14;1X14;2X14;3X14;4X14;5X14;6X14;7X14;8X14;9X14;10X14;11X14;12X14;13X13;0X13;1X13;2X13;3X13;4X13;5X13;6X13;7X13;8X13;9X13;10X13;11X13;12X13;13X12;0X12;1X12;2X12;3X12;4X12;5X12;6X12;7X12;8X12;9X12;10X12;11X12;12X12;13X11;0X11;1X11;2X11;3X11;4X11;5X11;6X11;7X11;8X11;9X11;10X11;11X11;12X11;13X10;0X10;1X10;2X10;3X10;4X10;5X10;6X10;7X10;8X10;9X10;10X10;11X10;12X10;13X9;0 X9;1 X9;2 X9;3 X9;4 X9;5 X9;6 X9;7 X9;8 X9;9X9;10X9;11X9;12X9;130 0 0 0 X8;4 X8;5 X8;6 X8;7 X8;8 X8;9X8;10X8;11X8;12X8;130 0 0 0 X7;4 X7;5 X7;6 X7;7 X7;8 X7;9X7;10X7;11X7;12X7;130 0 0 0 X6;4 X6;5 X6;6 X6;7 X6;8 X6;9X6;10X6;11X6;12X6;130 0 0 0 0 X5;5 X5;6 X5;7 X5;8 X5;9X5;10X5;11X5;12X5;130 0 0 0 0 0 X4;6 X4;7 X4;8 X4;9X4;10X4;11X4;12X4;130 0 0 0 0 0 0 X3;7 X3;8 X3;9X3;10X3;11X3;12X3;130 0 0 0 0 0 0 0 X2;8 X2;9X2;10X2;11X2;12X2;130 0 0 0 0 0 0 0 X1;8 X1;9X1;10X1;11X1;12X1;130 0 0 0 0 0 0 0 X0;8 X0;9X0;10X0;11X0;12X0;13 1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCAFigure 1.Now �x a \bivetor" M = [u1; u2; : : : ; un j v1; v2; : : : ; vn℄ of positive integers withu1 < u2 < � � � < un and v1 < v2 < � � � < vn. Let K[Y ℄ denote the ring of allpolynomials over some �eld K in the Yi;j's, 0 � i � b, 0 � j � a, and let IM(Y )be the ideal in K[Y ℄ that is generated by those t� t minors of Y that ontain onlynonzero entries, whose rows form a subset of the last ut� 1 rows, or whose olumnsform a subset of the last vt � 1 olumns, t = 1; 2; : : : ; n + 1. Here, by onvention,un+1 is set equal to b + 2, and vn+1 is set equal to a + 2. (Thus, for t = n + 1 therows and olumns of minors are unrestrited.) The ideal IM(Y ) is alled a ladderdeterminantal ideal ogenerated by the minor M . (That one speaks of `the minorM 'has its explanation in the identi�ation of the bivetor M with a partiular minor40
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Figure 2.of Y , f. [11, Se. 2℄. It should be pointed out that our onventions here deviateslightly from the ones in [11℄. In partiular, we de�ned the ideal IM(Y ) by restritingrows and olumns of minors to a ertain number of last rows or olumns, while in[11℄ it is �rst rows, respetively olumns. Clearly, a rotation of the matrix by 180Ætransforms one onvention into the other.) The assoiated ladder determinantalring ogenerated by M is RM(Y ) := K[Y ℄=IM(Y ). (We remark that the de�nitionof ladder is more general in [1, 2, 5, 11℄. However, there is in e�et no loss ofgenerality sine the ladders of [1, 2, 5, 11℄ an always be redued to our de�nitionby disarding superuous 0's.)When Abhyankar introdued ladder determinantal rings in the early1980s, he was motivated by the study of singularities of Shubert varieties. Indeed,as was shown reently by Goniulea and Lakshmibai in [10℄ (see also [3, Ch. 12℄),the assoiated varieties (alled ladder determinantal varieties) an be identi�ed withopposite ells of ertain Shubert varieties of type A. This onnetion allowed themto identify the irreduible omponents of suh Shubert varieties in many ases, thusmaking substantial progress on a long-standing problem in algebrai geometry.Results of Abhyankar [1, 2℄ or Herzog and Trung [11℄ allow to express the Hilbertseries of the ladder determinantal ring RM(Y ) in ombinatorial terms. Before wean state the orresponding result, we need to introdue a few more terms.When we say lattie path we always mean a lattie path in the plane onsistingof unit horizontal and vertial steps in the positive diretion, see Figure 3 for anexample. We shall frequently abbreviate the fat that a lattie path P goes from Ato E by P : A! E.Also, given lattie points A and E, we denote the set of all lattie paths fromA to E by P(A ! E). A family (P1; P2; : : : ; Pn) of lattie paths Pi, i = 1; 2; : : : ; n,is said to be noninterseting if no two lattie paths of this family have a pointin ommon. Given n-tuples of lattie points A = (A(1); A(2); : : : ; A(n)) and E =(E(1); E(2); : : : ; E(n)), we denote the set of all families (P1; P2; : : : ; Pn) of noninter-seting lattie paths, where Pi runs from A(i) to E(i), i = 1; 2; : : : ; n, by P+(A! E).A point in a lattie path P whih is the end point of a vertial step and at the41
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Figure 3.same time the starting point of a horizontal step will be alled a north-east turn(NE-turn for short) of the lattie path P . The NE-turns of the lattie path inFigure 3 are (1; 1), (2; 3), and (5; 4). We write NE(P ) for the number of NE-turnsof P . Also, given a family P = (P1; P2; : : : ; Pn) of paths Pi, we write NE(P) for thenumber Pni=1NE(Pi) of all NE-turns in the family.Our lattie paths will be restrited to ladder-shaped regions L orrespondingto the nonzero entries of a given matrix Y in the way that was explained earlier(f. Figures 1 and 2). We extend our lattie path notation in the following way. ByPL(A! E) we mean the set of all lattie paths P from A to E all of whose NE-turnslie in the ladder region L. (It should be noted that, in the ase of a two-sided ladder,it is possible that a path is not totally inside L while its NE-turns are. However, inthe ase of an upper ladder L, whih is the ase of interest in our paper, a path isinside L if and only if all of its NE-turns are.) Similarly, by P+L (A! E) we meanthe set of all families (P1; P2; : : : ; Pn) of noninterseting lattie paths, where Pi runsfrom A(i) to E(i) and where all the NE-turns of Pi lie in the ladder region L.Finally, given any weight funtion w de�ned on a set M, by the generatingfuntion GF(M;w) we mean Px2M w(x).Theorem 2.1. Let Y = (Yi;j)0�i�b; 0�j�a be a one-sided ladder, and let L be theassoiated ladder region, i.e., Yi;j = Xi;j if and only if (j; b � i) 2 L. Let M =[u1; u2; : : : ; un j v1; v2; : : : ; vn℄ be a bivetor of positive integers with u1 < u2 <� � � < un and v1 < v2 < � � � < vn. Furthermore, let A(i) = (0; un+1�i � 1) andE(i) = (a� vn+1�i+1; b), i = 1; 2; : : : ; n. Then, under the assumption that all of thepoints A(i) and E(i), i = 1; 2; : : : ; n, lie inside the ladder region L, the Hilbert seriesof the ladder determinantal ring RM(Y ) = K[Y ℄=IM(Y ) equals1X̀=0 dimK RM(Y )` z` = GF(P+L (A! E); zNE(:))(1� z)(a+b+3)n�Pni=1(ui+vi) ; (1)where RM(Y )` denotes the homogeneous omponent of degree ` in RM (Y ), andwhere, aording to our de�nitions, GF(P+L (A! E); zNE(:)) is the generating fun-42



tionPP zNE(P) for all families P = (P1; P2; : : : ; Pn) of noninterseting lattie paths,Pi running from A(i) to E(i), suh that all of its NE-turns stay inside the ladderregion L.Remark. (a) The ondition that all of the points A(i) and E(i) lie inside the ladderregion L restrits the hoie of ladders. In partiular, for an upper ladder it meansthat Yb�un+1;0 = Xb�un+1;0 and Y0;a�vn+1 = X0;a�vn+1, whih will be relevant for us.Still, one ould prove an analogous result even if this ondition is dropped. In thatase, however, the points A(i) and E(i) have to be modi�ed in order to lie inside Land, thus, make the right-hand side of formula (1) meaningful.(b) For an extension of Theorem 2.1 for the ase of two-sided ladders see [24,Theorem 3.1℄.Sketh of Proof. In [17, proof of Theorem 2℄, we gave two proofs of this assertion inthe speial ase of a one-sided ladder and ui = vi = i, i = 1; 2; : : : ; n (f. Example (1)on p. 10 of [11℄). The �rst proof followed basially onsiderations by Kulkarni [20, 21℄(see also [8℄), and was based on an expliit basis for RM(Y ) given by Abhyankar [1,Theorem (20.10)(5)℄. The seond proof was based on ombinatorial desriptions ofthe dimensions RM(Y )` of the homogeneous omponents of RM (Y ) due to Herzogand Trung [11, Cor. 4.3 + Lemma 4.4℄. Both proofs arry over verbatim to our moregeneral situation beause both Abhyankar's as well as Herzog and Trung's resultsare in fat theorems for the general ladder determinantal rings that we onsider here.(However, the reader must be warned that the expliit form of Abhyankar's basiswas misquoted in [17℄. The orret assertion is that, given a multiset S as desribedin [17℄, the assoiated basis element is the produt of a ertain monomial in the Xij'sand a ertain minor of the matrix Y , see [1, de�nition of wv(t) in Theorem (20.10)℄or [8, Theorem (6.7)(iii)℄ Also, the de�nition of the multisets S ontained an error:Item 2 at the bottom of p. 1019 in [17℄ must be replaed by: The length of anysequene (i1; j1), (i2; j2), . . . , (ik; jk) of elements of S is at most n. The subsequentargument was however based on this orreted de�nition.)3 The determinantal formulaIn view of Theorem 2.1, the omputation of Hilbert series of ladder determinantalrings requires to solve the problem of ounting families of noninterseting lattiepaths in a ladder-shaped region with respet to turns. We provide suh a solutionfor one-sided ladders in Theorem 3.1. In order to formulate the result, we need tointrodue the notion of two-rowed arrays.From now on we restrit our attention to one-sided ladders. Without loss of gen-erality it suÆes to onsider upper ladders. We enode upper ladder-shaped regions(suh as the one in Figure 2) onisely by means of weakly inreasing funtions asfollows: given an upper ladder region L, let f be the weakly inreasing funtionfrom [0; a℄ to [1; b+ 1℄ with the property that it desribes L by means ofL = f(x; y) : x 2 [0; a℄ and 0 � y < f(x)g: (2)43



Here, by [; d℄ we mean the set of all integers �  and � d. In essene, the funtionf desribes the upper border of the region L. For example, the funtion f orre-sponding to the ladder region in Figure 2 (where a = 13 and b = 15) is given byf(0) = 7, f(1) = 7, f(2) = 7, f(3) = 7, f(4) = 10, f(5) = 11, f(6) = 12, f(7) = 13,f(8) = 16, f(9) = 16, f(10) = 16, f(11) = 16, f(12) = 16, f(13) = 16.By a two-rowed array we mean two rows of integersa�l+1 a�l+2 : : : a�1 a0 a1 : : : akb1 : : : bk; (3)where entries along both rows are stritly inreasing. We all l the type of the two-rowed array. We allow l to be also negative. In this ase the representation (3) hasto be taken symbolially, in the sense that the �rst row of the two-rowed array is(by �l) shorter than the seond row, i.e., looks likea�l+1 : : : akb1 b2 : : : b�l b�l+1 : : : bk: (4)We de�ne the size jT j of a two-rowed array T to be the number of its entries.(Thus, the size of the two-rowed array in (3) is l+2k, as is the size of the one in (4).)We extend this de�nition and notation to families T = (T1; T2; : : : ; Tn) of two-arraysby letting jTj denote the total number jT1j+ jT2j+ � � �+ jTnj of entries in T.Now we de�ne the basi set of objets whih is ruial in our formulas. Givena funtion f as above, and pairs A = (�1; �2) and E = ("1; "2), we denote byTA(l;A;E; f; d) the set of all two-rowed arrays of type l suh that� the entries in the �rst row are bounded below by �1 and bounded above by"1,� the entries in the seond row are bounded below by �2 and bounded above by"2,� if the two-rowed array is represented as in (3) (respetively (4)), we havebs < f(as+d); (5)for all s suh that both bs and as+d exist in the two-rowed array.If we want to make the lower and upper bounds transparent, then we will writesuh two-rowed arrays in the form�1 � a�l+1 a�l+2 : : : a�1 a0 a1 : : : ak � "1�2 � b1 : : : bk � "2: (6)Our key theorem is the following.
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Theorem 3.1. Let n; a; b be positive integers and let L be an upper ladder-shapedregion determined by the weakly inreasing funtion f : [0; a℄ ! [1; b + 1℄ by meansof (2). For onveniene, extend f to all negative integers by setting f(x) := f(0) forx < 0. Furthermore, let A(i) = (A(i)1 ; A(i)2 ) and E(i) = (E(i)1 ; E(i)2 ) for i = 1; 2; : : : ; nbe lattie points in the region L satisfyingf(x) = f�A(1)1 � for all x � A(1)1 , (7)and A(1)1 � A(2)1 � � � � � A(n)1 ; A(1)2 > A(2)2 > � � � > A(n)2 ; (8)and E(1)1 < E(2)1 < � � � < E(n)1 ; E(1)2 � E(2)2 � � � � � E(n)2 : (9)Then the generating funtion P zNE(P), where the sum is over all families P =(P1; P2; : : : ; Pn) of noninterseting lattie paths Pi : A(i) ! E(i), i = 1; 2; : : : ; n lyingin the region L, an be expressed asGF(P+L (A! E); zNE(:)) = det1�s;t�n �GF(TA(t� s; ~A(t); ~E(s); f; s� 1); zj:j=2)�; (10)where ~A(i) = A(i) + (�i + 1; i) and ~E(i) = E(i) + (�i; i � 1), i = 1; 2; : : : ; n. Here,by our de�nitions, GF(TA(t� s; ~A(t); ~E(s); f; s� 1); zj:j=2) is the generating funtionPT zjT j=2, where the sum is over all two-rowed arrays of the form (6) with l = t� s,d = s� 1, �1 = A(i)1 � i+1, �2 = A(i)2 + i, "1 = E(i)1 � i, and "2 = E(i)2 + i� 1, whihsatisfy (5).Remark. (a) The ondition (7) is equivalent to saying that to the left of A(1), whihby (8) is the left-most starting point of the lattie paths, the boundary of the ladderregion is horizontal. Clearly, this an be assumed without loss of generality beausethis part of the ladder (i.e., the ladder to the left of A(1)) does not impose anyrestrition on the lattie paths, and, hene, on the left-hand side of (10).(b) The formula (10) learly redues the problem of enumerating families ofnoninterseting lattie paths in the ladder region L with respet to NE-turns tothe problem of enumerating ertain two-rowed arrays. We are going to address thisproblem in Setion 5.Thus, if we ombine Theorems 2.1 and 3.1, we obtain the promised determinantalformula for the Hilbert series of one-sided ladder determinantal rings.Corollary 3.2. Let Y = (Yi;j)0�i�b; 0�j�a be an upper ladder, and let L be theassoiated ladder region, i.e., Yi;j = Xi;j if and only if (j; b � i) 2 L, and let f :[0; a℄ ! [1; b + 1℄ be the funtion that desribes this ladder region by means of (2),i.e., Yi;j = Xi;j if and only if b� i < f(j). For onveniene, extend f to all negative45



integers by setting f(x) := f(0) for x < 0. Let M = [u1; u2; : : : ; un j v1; v2; : : : ; vn℄be a bivetor of positive integers with u1 < u2 < � � � < un and v1 < v2 < � � � < vnsuh that Yb�un+1;0 = Xb�un+1;0 and Y0;a�vn+1 = X0;a�vn+1 (f. Remark 2.(a) afterTheorem 2.1). Furthermore, we let ~A(i) = (�i + 1; un+1�i + i � 1) and ~E(i) =(a� vn+1�i � i + 1; b + i� 1), i = 1; 2; : : : ; n. Then the Hilbert series of the ladderdeterminantal ring RM(Y ) = K[Y ℄=IM(Y ) equals1X̀=0 dimK RM (Y )` z` = det1�s;t�n �GF(TA(t� s; ~A(t); ~E(s); f; s� 1); zj:j=2)�(1� z)(a+b+3)n�Pni=1(ui+vi) : (11)Remark. (a) Theorem 3.1 speializes to Theorem 1 in [14℄ in the ase of a trivialladder (i.e., if the funtion f is equal to b + 1 for all x). For, in that ase, by (37)the generating funtions GF(TA(t � s; ~At; ~Es; f; s � 1); zj:j=2) an be expressed interms of binomial sums. To see that the resulting formula is indeed equivalent, oneextrats the oeÆient of zK .(b) For the same reason, Corollary 3.2 speializes to Abhyankar's formula [1,(20.14.4), L = 2, k = 2, with F (22)(m; p; a; V ) de�ned on p. 50℄ in the ase of atrivial ladder. Although Abhyankar's formula gives an expression for the Hilbertfuntion (instead of for the Hilbert series), it is easy to see that it is equivalent toours in this speial ase.() The formula for the Hilbert series in [17, Theorem 2℄ addresses the speialase ui = vi = i, i = 1; 2; : : : ; n. However, Corollary 3.2 does not generalize thisformula, as it does not diretly speialize to Theorem 2 in [17℄. Whereas in the latterformula the entries of the determinant are generating funtions for paths, there isno suh interpretation for the entries of the determinant in (11).(d) Unfortunately, we do not know how to generalize Theorem 3.1, and, thus,Corollary 3.2, to the ase of two-sided ladders. It seems that a ompletely new ideais needed to �nd suh a generalization. In partiular, the ombinatorial formula [24,Theorem 3.1℄ for the Hilbert series in the ase of two-sided ladders, on whih suha generalization would have to be based, is already onsiderably more ompliatedthan its speial ase for the ase of one-sided ladders, stated in Theorem 2.1.(e) More modest, but equally desirable, would it be to �nd an extension ofCorollary 3.2 in the one-sided ase to ladders L and bivetorsM whih do not satisfythe onditions of the statement, i.e., for whih either Yb�un+1;0 = 0, or Y0;a�vn+1 = 0,or both. This would require to �nd an extension of Theorem 3.1 to situations wherethe inequality hains (8) and (9) may be relaxed so that some starting and endpoints are allowed to lie on the boundary of the ladder region L (f. Remark 2.(a)after Theorem 2.1). It seems again that a ompletely new idea is needed to �ndsuh an extension.(f) In Setion 5 of [17℄ it is shown that the proof of the main ounting theoremyields in fat a weighted generalization thereof. An analogous weighted general-ization of Theorem 3.1 an be obtained as well, whih is again diretly implied by46



the proof of Theorem 3.1 in Setion 4. However, we omit the statement of thisgeneralization for the sake of brevity.Example 3.3. Let a = 13, b = 15, n = 4, let Y = (Yi;j) be the matrix of Fig-ure 1 and M = [1; 2; 4; 6 j 1; 2; 3; 6℄. Our formula (11) gives for the Hilbert se-ries of RM(Y ) = K[Y ℄=IM(Y ), using (45) for determining the generating funtionPT2TA(l;A;E;f;d) zj:j=2 for two-rowed arrays T in the orresponding ladder region L ofFigure 2,(1+71z+2556z2+61832z3+1115762z4+15750005z5+178390279z6+1647137174z7+12534233703z8+79245271879z9+418852424787z10+1859941402206z11+6965987806143z12+22071622313567z13+59298706514083z14+135299444287353z15+262400571075662z16+432640455645309z17+606103694379729z18+720535170430557z19+725289798304502z20+616230022969392z21+439998448014899z22+262469031030333z23+129776697745621z24+52622863698472z25+17241967478923z26+4468021840695z27+885721405230z28+126901720400z29+11760999250z30+532021875z31)=(1�z)99:4 Proof of Theorem 3.1The basi idea of the proof is simple. It largely follows the proof of Theorem 4in [14℄. As a �rst step, we expand the determinant on the right-hand side of (10)aording to the de�nition of a determinant, see Subsetion 4.1. Thus, we obtain asum of terms, eah of whih is indexed by a family of two-rowed arrays, see (12).Some of the terms have positive sign, some of them negative sign. In the seondstep, we identify the terms whih anel eah other, see Subsetion 4.2. Finally, inthe third step, we identify the remaining terms with the families of nonintersetinglattie paths in the statement of the theorem, see Subsetion 4.3.However, the details are sometimes intriate. To show that the terms desribedin Subsetion 4.2 do indeed anel, we de�ne an involution on families of two-rowedarrays in Subsetion 4.4. (This involution is opied from [14, Proof of Theorem 4℄.)In order that our laims follow, this involution must have several properties, whihare listed in Subsetion 4.5. While most of these are either obvious or are alreadyestablished in [14℄ and [23℄, we are only able to provide a rather tehnial justi�ationof the one pertaining to the ladder ondition. This is done in Subsetion 4.6.
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4.1 Expansion of the determinantLet Sn denote the symmetri group of order n. We start by expanding the deter-minant on the right-hand side of (10), to obtaindet1�s;t�n �GF(TA(t� s; ~A(t); ~E(s); f; s� 1); zj:j=2)�= X�2Sn sgn � nYi=1 GF(TA(�(i)� i; ~A(�(i)); ~E(i); f; i� 1); zj:j=2)= X(T;�) sgn � zjTj; (12)where the sum is over all pairs (T; �) of permutations � in Sn, and families T =(T1; T2; : : : ; Tn) of two-rowed arrays, Ti being of type �(i) � i (i.e., the seond rowontaining ki entries and the �rst row ontaining ki + �(i)� i entries, for some ki),and the bounds for the entries of Ti being as follows,~A(�(i))1 � a(i)��(i)+i+1 : : : a(i)1 : : : a(i)ki � ~E(i)1~A(�(i))2 � b(i)1 : : : b(i)ki � ~E(i)2 ; (13)with the property thatb(i)s < f(a(i)s+i�1); s = 1; 2; : : : ; ki � i+ 1; (14)i = 1; : : : ; n.4.2 Whih terms in (12) anel?Now we laim that the total ontribution to the sum (12) of the families (T1; T2; : : : ; Tn)of two-rowed arrays as above whih have the property that there exist Ti and Ti+1,Ti represented by ~A(�(i))1 � a��(i)+i+1 : : : a1 : : : ak � ~E(i)1~A(�(i))2 � b1 : : : bk � ~E(i)2 ; (15a)and Ti+1 represented by~A(�(i+1))1 � ��(i+1)+i+2 : : : 1 : : : l � ~E(i+1)1~A(�(i+1))1 � d1 : : : dl � ~E(i+1)1 ; (15b)and indies I and J suh that J < aI (15)bI�1 < dJ (15d)and 1 � I � k + 1; 0 � J � l; (15e)48



equals 0. The inequalities (15) and (15d) should be understood to hold only ifall variables are de�ned, inluding the onventional de�nitions ak+1 := ~E(i)1 + 1,b0 := ~A(�(i))2 � 1, and ��(i+1)+i+1 := ~A(�(i))1 � 1. (These arti�ial settings apply forI = k + 1, I = 1, and J = ��(i + 1) + i + 1, respetively. It should be noted thatthe indexing onventions that we have hosen here deviate slightly from [14, Se. 3,proof of Theorem 4℄, but are ompletely equivalent.)We all the point (aI ; dJ) a rossing point of Ti and Ti+1, and, more generally, arossing point of the family T.4.3 The remaining terms orrespond to noninterseting lat-tie pathsSuppose that we would have shown that the ontribution to (12) of these families oftwo-rowed arrays equals zero. It implies that only those families T = (T1; T2; : : : ; Tn)of two-rowed arrays, Ti being of the form (13) and satisfying (14), ontribute to (12)where Ti and Ti+1 have no rossing point for all i.So, let T be suh a family of two-rowed arrays without any rossing point. Byusing the arguments from [23℄1 (with A(i)1 , A(i)2 , E(i)1 , E(i)2 in [23℄ replaed by our~A(i)1 , ~A(i)2 � 1, ~E(i)1 + 1, ~E(i)2 , respetively, i = 1; 2; : : : ; n), it then follows that thepermutation � assoiated to T must be the identity permutation. Thus, the two-rowed array Ti has the form (reall (13))~A(i)1 � a(i)1 : : : a(i)ki � ~E(i)1~A(i)2 � b(i)1 : : : b(i)ki � ~E(i)2 ; (16)and satis�es (14). Moreover, we assumed that there is no rossing point, meaningthat there are no onseutive two-rowed arrays Ti and Ti+1 and indies I and J suhthat (15) holds.By interpreting the two-rowed array (16) as a lattie path ~Pi from ~A(i) � (0; 1)to ~E(i) + (1; 0) whose NE-turns are exatly (a(i)1 ; b(i)1 ), . . . , (a(i)ki ; b(i)ki ), i = 1; 2; : : : ; n,the family T of two-rowed arrays is translated into a family eP = ( ~P1; ~P2; : : : ; ~Pn) ofpaths. Clearly, under this translation we have jTj=2 = NE(eP), and, hene,zjTj=2 = zNE(eP): (17)The fat that (15) does not hold simply means that the paths ~Pi and ~Pi+1 do notross eah other (that is, they may touh eah other, but they never hange sides),i = 1; 2; : : : ; n � 1. We refer the reader to the explanations in Setion 2 (betweenTheorems 3 and 4) in [14℄. Here, we ontent ourselves with an illustration. Supposetwo paths Q1 and Q2 ross eah other (see Figure 4). Furthermore suppose thatthe NE-turns of Q1 are (a1; b1), (a2; b2), . . . , (ak; bk), and the NE-turns of Q2 are1The proof in the original paper [14, last paragraph of the proof of Theorem 4℄ ontained anerror at this point. The inequality A(�(i+1))1 � 1 � A(�(i)) on page 12 of [14℄ is not true in general.49



(1; d1), (2; d2), . . . , (l; dl). Then it is obvious from Figure 4 that there exist I andJ suh that (15){(15e) hold.
� ��

(J ; dJ)
(aI ; bI�1)

Q1 Q2
Figure 4.To �nally math with the laim of Theorem 3.1, we shift ~Pi by (i � 1;�i + 1),i = 1; 2; : : : ; n. Thus we obtain a family (P1; P2; : : : ; Pn) of lattie paths, Pi runningfrom A(i) to E(i). Clearly, under this shift, the ondition that ~Pi and ~Pi+1 do notross eah other translates into the ondition that Pi and Pi+1 do not touh eahother, i = 1; 2; : : : ; n� 1. If we ombine this fat with the observation that the �rstpath, P1 = ~P1, stays inside the ladder region L beause of (14) with i = 1, then weonlude that all the Pi's must also stay inside L beause P1 forms a barrier.Thus, in view of (17), we have proved that the right-hand side of (10) is equalto the generating funtion PP zNE(P), where the sum is over all families P =(P1; P2; : : : ; Pn) of noninterseting lattie paths, Pi running from A(i) to E(i) andstaying inside the ladder region L. But this is exatly the left-hand side of (10).Thus Theorem 3.1 would be proved.4.4 The involutionTo show that the ontribution to the sum (12) of the families T = (T1; T2; : : : ;Tn) of two-rowed arrays, Ti being of the form (13) and satisfying (14) for i =1; 2; : : : ; n, whih ontain onseutive arrays Ti and Ti+1 that have a rossing point(f. (15)), indeed equals 0, we onstrut an involution, ' say, on this set of familiesthat maps a family (T1; T2; : : : ; Tn) with assoiated permutation � to a family T =(T 1; T 2; : : : ; T n) with assoiated permutation �, suh thatsgn � = � sgn �; (18)and suh that jTj = jTj: (19)Clearly, this implies that the ontribution to (12) of families that are mapped toeah other anels.The de�nition of the involution ' an be opied from [14, Se. 3, proof of Theo-rem 4℄. For onveniene, we repeat it here. Let (T; �) be a pair under onsideration50



for the sum (12). Besides, we assume that T has a rossing point. Consider allrossing points of two-rowed arrays with onseutive indies (see (15)). Amongthese points hoose those with maximal x-oordinate, and among all those hoosethe rossing point with maximal y-oordinate. Denote this rossing point by S. Leti be minimal suh that S is a rossing point of Ti and Ti+1. Let Ti and Ti+1 be givenby (15a) and (15b), respetively. By (15), S being a rossing point of Ti and Ti+1means that there exist I and J suh that Ti looks like~A(�(i))1 � : : : aI�1 aI : : : aki � ~E(i)1~A(�(i))2 � : : : bI�1 bI : : : bki � ~E(i)2 ; (20)Ti+1 looks like ~A(�(i+1))1 � : : : : : : : : : J J+1 : : : ki+1 � ~E(i)1~A(�(i+1))2 � : : : dJ�1 dJ : : : : : : : : : dki+1 � ~E(i)2 ; (21)S = (aI ; dJ), J < aI (22a)bI�1 < dJ (22b)and 1 � I � ki + 1; 0 � J � ki+1: (22)Beause of the onstrution of S, the indies I and J are maximal with respet to(22).We map (T; �) to the pair (T; � Æ (i; i+ 1)) ((i; i+ 1) denotes the transpositionexhanging i and i+1), where T = (T 1; T 2; : : : ; T n), with T j = Tj for all j 6= i; i+1,with T i being given by : : : J aI : : : aki: : : dJ�1 bI : : : bki; (23a)and with T i+1 being given by: : : : : : : : aI�1 J+1 : : : ki+1: : : bI�1 dJ : : : : : : : : : dki+1: (23b)4.5 The properties of the involutionWhat we have to prove is that this operation is well-de�ned, i.e., that all the rowsin (23a) and (23b) are stritly inreasing, that T i is of type (� Æ (i; i + 1))(i)� i =�(i+1)� i, that T i+1 is of type (� Æ (i; i+1))(i+1)� i� 1 = �(i)� i� 1, that thebounds for the entries of T i are given by~A(�(i+1))1 � : : : J aI : : : aki � ~E(i)1~A(�(i+1))2 � : : : dJ�1 bI : : : bki � ~E(i)2 ; 51



that those for T i+1 are given by~A(�(i))1 � : : : : : : : : aI�1 J+1 : : : ki+1 � ~E(i+1)1~A(�(i))2 � : : : bI�1 dJ : : : : : : : : : dki+1 � ~E(i+1)2 ;and that (14) is satis�ed for T i and T i+1. Furthermore we have to prove that ' isindeed an involution (for whih it suÆes to show that (22) also holds for T i andT i+1), and �nally we must prove (18) (with � = � Æ (i; i+ 1)) and (19).The laim that (18) and (19) hold is trivial. All other laims, exept for thelaim about (14), an be proved by opying the aording arguments from the proofof Theorem 4 in [14℄ (see the paragraphs after [14, Eq. (27)℄).4.6 The involution respets the ladder onditionIt remains to show that (14) is satis�ed for T i and T i+1. Unfortunately, it is neessaryto supplement and re�ne the aording arguments in the proof of the main theoremin [17℄ (see the proof of (4.27) and (4.28) in [17, pp. 1035{37℄) substantially in orderto ope with the situation that we enounter here. Besides, we use the opportunityto orret an inauray in [17℄.We have to prove that for 1 � r � i� 1 we havedJ�i+r < f(aI�1+r); (24)provided both aI�1+r and dJ�i+r exist (if either aI�1+r or dJ�i+r does not exist thereis nothing to show), and bI�i+r < f(J+r); (25)provided both bI�i+r and J+r exist (if either bI�i+r or J+r does not exist there isnothing to show).Proof of (24). In the following, let r be �xed. We distinguish between two ases.If E(1)1 � aI , then we have the following hain of inequalities:dJ�i+r � dJ�1 + 1� i + r � bI � i + r � bI�1+r � i + 1� ~E(i)2 � i+ 1 = E(i)2 � E(1)2 < f(E(1)1 ) � f(aI) � f(aI�1+r); (26)as required. (The seond inequality in (26) follows from the fat that the rows in(23a) are stritly inreasing.)Otherwise, if E(1)1 > aI , let us assume for the purpose of ontradition that (24)does not hold. Then, beause of the �rst two inequalities in (26) we have dJ�i+r � bI ,and hene f(aI) � f(aI�1+r) � dJ�i+r � bI : (27)In more olloquial terms, the point (aI ; bI) lies outside the ladder region L de�nedby (2). 52



For the following, we make the onventional de�nitions a(j)��(j)+j :=~A(�(j))1 � 1, a(j)kj+1 := ~E(j)1 + 1 (whih is in aordane with the onventional de�-nition for ak+1 in (15)), and b(j)0 := ~A(�(j))2 � 1 (whih is in aordane with theonventional de�nition for b0 in (15)).For any j < i we laim that, if for the two-rowed array Tj+1 (given by (13) withi replaed by j + 1) we �nd a pair (a(j+1)sj+1 ; b(j+1)sj+1 ) of entries (i.e., a(j+1)sj+1 and b(j+1)sj+1exist in Tj+1 or are de�ned by means of one of the above onventional de�nitions)suh that2 aI � a(j+1)sj+1 and bI � b(j+1)sj+1 ; (28)then we an �nd an h � j suh that the two-rowed array Th ontains a pair (a(h)sh ; b(h)sh )satisfying the same ondition, that isaI � a(h)sh and bI � b(h)sh : (29)In other words, we laim that if in Tj+1 we �nd a pair of entries whih, whenonsidered as a lattie point, is loated (weakly) northwest of (aI ; bI), then we willalso �nd suh a pair in Th for some h � j.Let us for the moment assume that we have already established the laim.Clearly, for j = i� 1 the ondition (28) is satis�ed with sj+1 = I, in whih ase wehave a(j+1)sj+1 = a(i)I = aI and b(j+1)sj+1 = b(i)I = bI . Then, by iterating the assertion of ourlaim, we will �nd that (29) is satis�ed for h = 1 and some s1. Using this and (27)we obtain f(a(1)s1 ) � f(aI) � bI � b(1)s1 :However, this inequality ontradits the fat that T1 obeys the ladder ondition (14)with i = 1 and s = s1. Hene, inequality (24) must be atually true.For the proof of the laim, we distinguish between four ases:(i) �(j) � j and a(j)1 � aI ;(ii) �(j) < j and a(j)��(j)+j+1 � aI ;(iii) �(j) � j and a(j)1 > aI ;(iv) �(j) < j and a(j)��(j)+j+1 > aI .4.6.1 Case �(j) � j and a(j)1 � aI.Beause we are assuming E(1)1 > aI , we have aI � E(1)1 � 1 = ~E(1)1 � ~E(j)1 . Thereforeit is impossible that a(j)1 = ~E(j)1 + 1 (by one of our onventional assignments), andhene a(j)1 does indeed exist, i.e., kj � 1 (f. (13) with i replaed by j).Let sj be maximal suh that a(j)sj � aI . By the above we have 1 � sj � kj.Therefore b(j)sj exists. If b(j)sj < bI , then we have a(j+1)sj+1 � aI < a(j)sj+1 and b(j)sj < bI �2It is at the orresponding plae where the inauray in [17℄ ours. On p. 1036 the inequalityhain aI � xs � � � � � ut has to be replaed by aI � xs, . . . , ai � ut, and the inequality hainbI � ys � � � � � vt has to be replaed by bI � ys, . . . , bI � vt. 53



b(j+1)sj+1 . But that means that (a(j)sj+1; b(j+1)sj+1 ) is a rossing point of Tj and Tj+1 (f.(15){(15e)) with larger x-oordinate than (aI ; dJ), ontraditing the maximality ofthe rossing point (aI ; dJ). Hene, we atually have b(j)sj � bI , and thus (29) holdswith h = j and with sj as above.4.6.2 Case �(j) < j and a(j)��(j)+j+1 � aI.The arguments from the above ase apply verbatim if one replaes a(j)1 by a(j)��(j)+j+1everywhere.4.6.3 Case �(j) � j and a(j)1 > aI.We show that this ase atually annot our. Beause of (7), we have f(A(1)1 ) �f(aI), and thereforeb(j)0 = ~A(�(j))2 � 1 � ~A(1)2 � 1 = A(1)2 < f(A(1)1 ) � f(aI) � bI � b(j+1)sj+1 ;the two last inequalities being due to (27) and (28). On the other hand, we havea(j+1)sj+1 � aI < a(j)1 . This means that (a(j)1 ; b(j+1)sj+1 ) is a rossing point of Tj and Tj+1with larger x-oordinate than (aI ; dJ), whih ontradits again the maximality of(aI ; dJ).4.6.4 Case �(j) < j and a(j)��(j)+j+1 > aI.If b(j)��(j)+j < bI , then we have a(j+1)sj+1 � aI < a(j)��(j)+j+1 and b(j)��(j)+j < bI � b(j+1)sj+1 .This means that (a(j)��(j)+j+1; b(j+1)sj+1 ) is a rossing point of Tj and Tj+1 with largerx-oordinate than (aI ; dJ), a ontradition. Therefore we atually have b(j)��(j)+j � bI .If a(j)��(j)+j = ~A(�(j))1 �1 � aI then (29) is satis�ed with h = j and sj = ��(j)+j.If, on the other hand, a(j)��(j)+j > aI , then of ourse (29) annot be satis�ed for h = jand any legal sj. However, we an show that it is satis�ed for some smaller h.Let us pause for a moment and summarize the onditions that we are enoun-tering in the urrent ase:�(j) < j, a(j)��(j)+j > aI and b(j)��(j)+j � bI : (30)Clearly, there is a maximal s with s � �(j) � �(s). We are going to show thatwe an either �nd an h � j and a legal sh suh that (29) is satis�ed, or we �ndan index ` < j suh that (30) is satis�ed with j replaed by ` (in whih ase werepeat the subsequent arguments), or we an onstrut a sequene of pairs (a(`)r` ; b(`)r` ),r` 2 f1; 2; : : : ; k`g for ` 2 fs+ 1; s+ 2; : : : ; j � 1g that satisfya(`+1)r`+1 � a(`)r` > aI and b(`)r` � b(`+1)r`+1 � bI ; (31)where, in order that (31) makes sense for ` = j � 1, we set rj = ��(j) + j. 54



However, if we have found suh pairs for ` 2 fs + 1; s + 2; : : : ; j � 1g, then wehaveaI < a(s+1)rs+1 < a(j)��(j)+j + 1 = ~A(�(j))1 � ~A(�(j))1 + �(j)� s � ~A(�(s))1 + �(s)� s � a(s)1and b(s)0 = ~A(�(s))2 � 1 � ~A(�(j))2 � 1 < b(j)��(j)+j = b(j)rj � b(s+1)rs+1 :This means that (a(s)1 ; b(s+1)rs+1 ) is a rossing point of Ts and Ts+1 with larger x-oordinate than (aI ; dJ), ontraditing again the maximality of (aI ; dJ). Thereforewe will atually �nd an h � j suh that (29) is satis�ed.We prove our laim in (31) by a reverse indution on `. (The last two inequalitiesin (30) guarantee that the indution an be started.) Suppose that we have alreadyfound indies rj�1; rj�2; : : : ; r`+1 satisfying (31). Then we distinguish between thetwo ases �(`) � ` and �(`) < `.First let us onsider the ase �(`) � `. If a(`)1 > a(`+1)r`+1 , then we have aI < a(`+1)r`+1 <a(`)1 and, if in addition ` � �(j), we haveb(`)0 = ~A(�(`))2 � 1 � ~A(�(j))2 � 1 < b(j)��(j)+j = b(j)rj � b(`+1)r`+1 ;where the �rst inequality is due to �(`) � ` � �(j). This means that (a(`)1 ; b(`+1)r`+1 )is a rossing point of T` and T`+1 with larger x-oordinate than (aI ; dJ), again aontradition.If ` < �(j), we an also prove that b(`)0 < b(`+1)r`+1 , giving the same ontradition.However, this time we must argue di�erently. Sine ` > s, all of �(` + 1); �(` +2); : : : ; �(�(j)) must be less than �(j). For that reason, beause of �(`) � ` and thepigeon hole priniple, there must be a t 2 f` + 1; `+ 2; : : : ; �(j)g with �(t) < �(`).Then, by (31), we obtainb(`)0 = ~A(�(`))2 � 1 � ~A(�(t))2 � 1 < b(t)rt � b(`+1)r`+1 :Hene, we atually have a(`)1 � a(`+1)r`+1 .We also have ~E(s)1 � ~A(�(s))1 + �(s) � s � 1, beause otherwise there would notbe any two-rowed array Ts (see (13) with i = s), i.e., the family T of two-rowedarrays that we are onsidering would not exist, whih is absurd. This implies theinequality hain~E(`)1 � ~E(s)1 � ~A(�(s))1 + �(s)� s� 1� ~A(�(j))1 + �(j)� s� 1 � ~A(�(j))1 � 1 = a(j)��(j)+j � a(`+1)r`+1 :Therefore it is impossible that a(`)1 = ~E(`)1 + 1 (by one of our onventional assign-ments), and hene a(`)1 does indeed exist, i.e., k` � 1. 55



Now let r` be maximal, suh that a(`)r` � a(`+1)r`+1 . By the above we have 1 � r` � k`.If b(`)r` < b(`+1)r`+1 , then we have aI < a(`+1)r`+1 < a(`)r`+1 and b(`)r` < b(`+1)r`+1 . This means that(a(`)r`+1; b(`+1)r`+1 ) is a rossing point of T` and T`+1 with larger x-oordinate than (aI ; dJ),whih is one more a ontradition.Hene, we atually have b(`)r` � b(`+1)r`+1 . Therefore, if a(`)r` � aI then (29) is satis�edwith h = ` and sh = r`, and otherwise, if a(`)r` > aI then (31) is satis�ed.As a last subase, we must onsider �(`) < `. Again we have to distinguishbetween two ases: if a(`)��(`)+`+1 � a(`+1)r`+1 , we argue exatly as in the above asewhere �(`) � ` and a(`)1 � a(`+1)r`+1 . (We just have to replae a(`)1 by a(`)��(`)+`+1 there.)Otherwise, if a(`)��(`)+`+1 > a(`+1)r`+1 , we get b(`)��(`)+` � b(`+1)r`+1 , beause otherwise aI <a(`+1)r`+1 < a(`)��(`)+`+1 and b(`)��(`)+` < b(`+1)r`+1 , and thus (a(`)��(`)+`+1; b(`+1)r`+1 ) is a rossingpoint with larger x-oordinate than (aI ; dJ), again a ontradition.Now, if a(`)��(`)+` � aI then (29) is satis�ed with h = ` and sh = ��(`) + `. Onthe other hand, if a(`)��(`)+` > aI then (30) is satis�ed with j replaed by `. In additionwe have ` < j. Consequently, we repeat the arguments subsequent to (30) with jreplaed by `. In that manner, we may possibly perform several suh iterations.However, these iterations must ome to an end beause �(1) � 1, and, hene, theonditions (30) annot be satis�ed for j = 1.Proof of (25). We proeed similarly. We �rst observe that we must have aI �J+1, beause otherwise we would have J+1 < aI and by (15d) also bI�1 < dJ < dJ+1,whih means that (aI ; dJ+1) is a rossing point of Ti and Ti+1, ontraditing themaximality of (aI ; dJ). Now we distinguish again between the same two ases as inthe proof of (24). If E(1)1 � aI , then we have the following hain of inequalities:bI�i+r � bI�1 + 1� i+ r � dJ � i + r � dJ+r � i� ~E(i+1)2 � i = E(i+1)2 � E(1)2 < f(E(1)1 ) � f(aI) � f(J+1) � f(J+r); (32)as required. (The seond inequality in (32) follows from the fat that the rows in(23b) are stritly inreasing.) If on the other hand we have E(1)1 > aI , then let usassume for the purpose of ontradition that (25) does not hold. This impliesf(aI) � f(J+r) � bI�i+r < bI :Again, this simply means that the point (aI ; bI) lies outside the ladder region Lde�ned by (2). We are thus in the same situation as in the above proof of (24),whih, in the long run, led to a ontradition.This ompletes the proof of the theorem.5 Enumeration of two-rowed arraysThe entries in the determinant in (10) and (11) are all generating funtionsP zjT j=2for two-rowed arrays T . Hene, we have to say how these an be omputed. Of56



ourse, a \nie" formula annot be expeted in general. There are only two ases inwhih \nie" formulas exist, the ase of the trivial ladder (i.e., f(x) � b+1; see (37)),and the ase of a ladder determined by a diagonal boundary (i.e., f(x) = x+D+1,for some positive integer D; see (39)). In all other ases one has to be satis�ed withanswers of reursive nature.We will desribe two approahes to attak this problem. The �rst leads to anextension of a formula due to Kulkarni [20℄ (see also [17, Prop. 4℄) for the generatingfuntion of lattie paths with given starting and end points in a one-sided ladderregion. The seond extends the alternative to Kulkarni's formula that was proposedin [17, Prop. 5{7℄. The �rst approah has the advantage of produing a formula(see Proposition 5.1 below) that an be ompatly stated. The seond approah isalways at least as eÆient as the �rst, but is by far superior for ladder regions of apartiular kind. This is disussed in more detail after the proof of Proposition 5.4.Proposition 5.1. Let f be a weakly inreasing funtion f : [0; a℄ ! [1; b + 1℄orresponding to a ladder region L by means of (2), as before. Extend f to allintegers by setting f(x) := �2 for x < 0 and f(x) := "2 + 1 for x > a. Let�1 � 1 < sk�1 < � � � < s1 < "1 be a partition of the (integer) interval [�1 � 1; "1℄suh that f is onstant on eah subinterval [si + 1; si�1℄, i = k; k � 1; : : : ; 1, withsk := �1 � 1 and s0 := "1. Then the generating funtion P zjT j=2 for all two-rowedarrays T of the form (6) and satisfying (5) is given byGF(TA(l; (�1; �2); ("1; "2); f; d); zj:j=2)= Xe+d�f�0ek�fk=l zek kYi=1 �si�1 � siei � ei�1��f 0(si�1)� f 0(si)fi � fi�1 �; (33)where e = (e1; e2; : : : ; ek) and f = (f1; f2; : : : ; fk), where, by de�nition, e0 = f0 = 0,where e + d � f � 0 means ei + d � fi � 0, i = 1; 2; : : : ; k, and where f 0(x) agreeswith f(x) for �1 � x < "1, but where f 0(�1�1) = �2 and f 0("1) = "2+1. (All othervalues of f 0 are not needed for the formula (33)).Proof. Let T be a two-rowed array in TA(l; (�1; �2); ("1; "2); f; d), represented as in(6). Suppose that there are ei entries in the �rst row of T that are larger than si,and that there are fi entries in the seond row of T that are larger than or equal tof(si), i = 1; 2; : : : ; k. Equivalently, we have"1 = s0 � a1 > � � � > ae1 > s1 � ae1+1 > � � � > ae2 > s2� � � � > sk�1 � aek�1+1 > � � � > aek > sk = �1 � 1; (34)andf 0(s0) = "2 + 1 > b1 > � � � > bf1 � f(s1) > bf1+1 > � � � > bf2 � f(s2)> � � � � f(sk�1) > bfk�1+1 > � � � > bfk � f 0(sk) = �2: (35)57



In partiular, we have ek � fk = l. From (5) it is immediate that we must haveei + d � fi � 0. Conversely, given integer vetors e and f with ei + d � fi � 0 andek � fk = l, by (34) and (35) there arekYi=1 �si�1 � siei � ei�1��f(si�1)� f(si)fi � fi�1 �possible hoies for the entries ai and bi, i = 1; 2; : : : , in the �rst and seond row ofa two-rowed array whih satis�es (34) and (35), and thus (5). This establishes (33).Remark. If in Proposition 5.1 we set l = d = 0, then we reover Kulkarni's for-mula [20, Theorem 4℄ (see also [17, Prop. 4℄), beause the two-rowed arrays inTA(0; (�1; �2); ("1; "2); f; 0) an be interpreted as lattie paths with starting point(�1; �2 � 1) and end point ("1 + 1; "2) whih stay in the ladder region de�ned by f .Now we desribe the announed alternative method to ompute the generatingfuntionP zjT j=2 for two-rowed arrays T of the form (6) whih satisfy (5). For sakeof onveniene, for A = (�1; �2) and E = ("1; "2) as before, �1 � "1, we introduethe set TA�(l;A;E; f; d) = TA(l;A;E; f; d) n TA(l;A+ (1; 0); E; f; d); (36)whih is simply the set of those two-rowed arrays of the given form whose �rst entryin the �rst row equals �1.This seond method is based on the simple fats that are summarized in Propo-sitions 5.2{5.4. The propositions extend in turn Propositions 5{7 in [17℄. In thefollowing, all binomial oeÆients �nk� are understood to be equal to zero if n isnegative and k is positive.Proposition 5.2. Let L be the trivial ladder determined by the funtion f(x) � b+1by means of (2). Let A = (�1; �2) and E = ("1; "2) be lattie points and l and darbitrary integers. Then we haveGF �TA(l;A;E; f; d); zj:j=2� =Xk �"1 � �1 + 1k + l ��"2 � �2 + 1k �zk+l=2; (37)and if �1 � "1 we haveGF �TA�(l;A;E; f; d); zj:j=2� =Xk � "1 � �1k + l � 1��"2 � �2 + 1k �zk+l=2: (38)Proposition 5.3. Let LD be a \diagonal" ladder determined by the funtion f(x) =x +D + 1 for an integer D by means of (2). Let d be a nonnegative integer and l
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an integer suh that l + d � 0. Let A = (�1; �2) and E = ("1; "2) be lattie pointssuh that �1 +D + 1 + l + d � �2 and "1 +D + 1 + d � "2. Then we haveGF �TA(l;A;E; f; d); zj:j=2� =Xk  �"1 � �1 + 1k + l ��"2 � �2 + 1k �� �"1 � �2 +D + 1k � d� 1 ��"2 � �1 �D + 1k + l + d+ 1 �!zk+l=2; (39)and if �1 � "1 we haveGF �TA�(l;A;E; f; d); zj:j=2� =Xk  � "1 � �1k + l � 1��"2 � �2 + 1k �� �"1 � �2 +D + 1k � d� 1 ��"2 � �1 �Dk + l + d �!zk+l=2: (40)Proof of Propositions 5.2 and 5.3. Identities (37) and (38) are immediate from thede�nitions.To prove identity (41), we note that the number of two-rowed arrays�1 � a�l+1 a�l+2 : : : a0 a1 : : : ak � "1�2 � b1 : : : bk � "2 (41a)that obey bi < ai+d +D + 1; i = 1; 2; : : : ; k; (41b)is the number of all two-rowed arrays of the form (41a) minus those that violate theondition (41b). Clearly, the generating funtion for the former two-rowed arraysis given by the �rst term in the sum on the right hand side of (39). We laimthat the two-rowed arrays of the form (41a) that violate (41b) are in one-to-oneorrespondene with two-rowed arrays of the form�2 �D � 1 : : : k�d�1 � "1�1 +D � d�l�2d�1 d�l�2d : : : d0 d1 : : : dk�d�1 � "2: (42)(In partiular, if k � d then there is no two-rowed array of the form (42), in agree-ment with the fat that there annot be any two-rowed array of the form (41a)violating (41b) in that ase.) The generating funtion for the two-rowed arrays in(42) is Xk �"1 � �2 +D + 1k � d� 1 ��"2 � �1 �D + 1k + l + d+ 1 �zk+l=2;whih is exatly the negative of the seond term on the right-hand side of (39). Thiswould prove (39). So it remains to onstrut the one-to-one orrespondene. 59



The orrespondene that we are going to desribe is gleaned from [18℄, see also[15, Se. 13.4℄ and [16℄. Take a two-rowed array of the form (41a) that violatesondition (41b), i.e., there is an index i suh that bi � ai+d +D + 1. Let I be thelargest integer with this property. Then map this two-rowed array to�2�D � (b1�D) : : : : : : : : : : : : : (bI�1�D) aI+d+1 : : : ak � "1�1+D � (a�l+1+D) : : : : : : : (aI+d+D) bI : : : : : : : : : : : : : : : : : : : : : : bk � "2:Note that both rows are stritly inreasing beause of bI�1�D � bI+1�D�2 <aI+d+1. If I = 1, we have to hek in addition that �2 �D � ad+2, whih is indeedthe ase, beausead+2 � ad+1 + 1 � � � � � a�l+1 + 1 + l + d � �1 + 1 + l + d � �2 �D:Similarly, it an be heked that bI�1 �D � "1 if I = k � d. It is easy to see thatthe array is of the form (42).The inverse of this map is de�ned in the same way. Take a two-rowed array ofthe form (42). Let J be the largest integer suh that dJ � J+d +D+ 1, if existent.If there is no suh integer, then let J = �d. We map this two-rowed array to�1 � (d�l�2d�1�D) : : : : : : : : : : : : : : : : : : (dJ�1�D) J+d+1 : : : k�d�1 � "1�2 � (1+D) : : : (J+d+D) dJ : : : : : : : : : : : : : : : : : : : : : : dk�d�1 � "2Sine we required l + d � 0 the entry dJ�1 � D exists even if J = �d. Thisimplies that the two-rowed array we obtained violates ondition (41b), sine dJ �dJ�1 + 1 = (dJ�1 � D) + D + 1. As above, it an be heked that both rows arestritly inreasing, even in the ase J = �d, and that the array is of the orretform.Equation (40) is an immediate onsequene of (39) and the de�nition (36) ofTA�(l;A;E; f; d).Proposition 5.4. Let L be an arbitrary ladder given by a funtion f by means of(2), let A = (�1; �2), E = ("1; "2) be lattie points in L, and let d be a nonnegativeinteger and l an integer suh that l + d � 0. Then for all x 2 [0; a℄ suh that�2 � f(x) � "2 + 1 we haveGF �TA(l;A;E; f; d); zj:j=2�= "1Xj=x+1GF �TA(l + d;A; (j � 1; f(x)� 1); f; 0); zj:j=2��GF �TA�(�d; (j; f(x)); E; f; d); zj:j=2�+ dXe=0 GF �TA(l + d� e;A; ("1; f(x)� 1); f; e); zj:j=2���"2 � f(x) + 1d� e �z(d�e)=2: (43)
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Proof. We show this reurrene relation by deomposing an array�1 � a�l+1 a�l+2 : : : a�1 a0 a1 : : : ak � "1�2 � b1 : : : bk � "2 (44)in TA(l;A;E; f; d) | the generating funtion of whih is the left-hand side of (43)| into two parts. Let I be the smallest integer with bI � f(x), or, if all bI aresmaller than f(x), let I = k + 1. Now we have to distinguish between two ases.If I + d < k + 1, we deompose suh an array into the array�1 � a�l+1 a�l+2 : : : a�1 a0 a1 : : : ad+1 : : : aI�1+d � aI+d � 1�2 � b1 : : : bI�1 � f(x)� 1in TA(l + d;A; �aI+d � 1; f(x)� 1�; f; 0), and the arrayaI+d � aI+d : : : ak � "1f(x) � bI : : : bI+d : : : bk � "2in TA�(�d; �aI+d; f(x)�; E; f; d). Clearly, this is a pair of two-rowed arrays enumer-ated by the �rst sum in the right hand side of (43), with the summation index jequal to aI+d.If I + d � k + 1, we deompose (44) into the array�1 � a�l+1 a�l+2 : : : a�1 a0 a1 : : : ak�I+2 : : : ak � "1�2 � b1 : : : bI�1 � f(x)� 1in TA(l � I + k + 1;A; �"1; f(x)� 1�; f; d+ I � k � 1), and a single rowf(x) � bI : : : bk � "2:Note that, if I = k+1, this row is empty. These pairs are enumerated by the seondsum on the right hand side of (43), with the summation index e equal to d+I�k�1.Now, here is the seond method for determining GF(TA(l; (�1; �2);("1; "2); f; d)); zj:j=2) for any given ladder L of the form (2), with points A = (�1; �2)and E = ("1; "2) loated inside L: partition the border of L, i.e., the set of pointsf(x; f(x)) : x 2 [0; a℄g into horizontal and diagonal piees, say L1; L2; : : : ; Lm, whereLi = f(x; f(x)) : xi�1 < x � xig, for some �1 = x0 < x1 < x2 < � � � < xm = a,eah Li being either horizontal or diagonal. Then apply the reurrene (43) in su-ession with x = xm�1; xm�2; : : : ; x1 and use (37){(40) to ompute all the ourringgenerating funtions.
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To give an example, in the ase of the ladder of Figure 2 we would hoose m = 3,x1 = 3, x2 = 7, x3 = 13, and the resulting formula readsGF �TA(l;A;E; f; d); zj:j=2� = "1Xj=8Xk�0 zk�d=2� "1 � jk � d� 1��"2 � 12k �� j�1Xi=4 Xk1;k2�0 zk1+k2+(l+d)=2� i� �1k1 + l + d��7� �2k1 �� ��j � i� 1k2 � 1 �� 6k2�� �7� ik2 �� j � 2k2 � 1��+Xk1�0 zk1+(l+d)=2� j � �1k1 + l + d��7� �2k1 �!+ dXe=0z(d�e)=2�"2 � 12d� e �� "1Xi=4 Xk1;k2�0 zk1+k2+(l+d�e)=2� i� �1k1 + l + d��7� �2k1 �� � "1 � ik2 � e� 1�� 6k2�� �7� ik2 �� "1 � 1k2 � e� 1�!+ eXf=0Xk�0 zk+(l+d+e)=2�f� "1 � �1 + 1k + l + d� f��7� �2k �� 6e� f�!: (45)If L onsists of not too many piees, both methods are feasible methods, see ourExample in Setion 3. Both methods yield (2m�1)-fold sums if the partition of theborder onsists of horizontal piees throughout. However, the seond method is byfar superior in ase of long diagonal portions in the border of L, sine then Kulka-rni's formula involves a lot more summations. For example, when we implementedformula (45) (in Mathematia) it was by a fator of 40.000 (!) faster than the orre-sponding implementation of formula (33). (Indeed, the \simpliity" of the formula(33) in omparison to (45) is deeptive, as (33) involves an 11-fold summation inthat ase, whereas (45) has only 3-fold, 4-fold, and 5-fold sums.) Of ourse, in theworst ase, when L onsists of 1-point piees throughout, both methods are nothingelse than plain ounting, and therefore useless. For omputation in ase of suh\fratal" boundaries it is more promising to avoid Theorem 3.1 and instead try toextend the dummy path method in [19℄ suh that it also applies to the enumerationof noninterseting lattie paths with respet to turns.
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Chapter 4The h-vetor of a ladder determinantalring ogenerated by 2� 2 minors islog-onave�AbstratWe show that the h-vetor of a ladder determinantal ring ogenerated byM = [u1 j v1℄ is log-onave. Thus we prove an instane of a onjeture ofStanley, resp. Cona and Herzog.1 IntrodutionDe�nition 1.1. A sequene of real numbers a1; a2; : : : ; an is logarithmially onave,for short log-onave, if ai�1ai+1 � a2i for i 2 f2; 3; : : : ; n� 1g.Numerous sequenes arising in ombinatoris and algebra have, or seem to havethis property. In the paper [13℄ written in 1989, Rihard Stanley olleted variousresults on this topi. (For an update see [3℄.) There he also stated the followingonjeture:Conjeture 1.2. Let R = R0�R1� : : : be a graded (Noetherian) Cohen-Maaulay(or perhaps Gorenstein) domain over a �eld K = R0, whih is generated by R1 andhas Krull dimension d. Let H(R;m) = dimK Rm be the Hilbert funtion of R andwrite Xm�0H(R;m)xm = (1� x)�d sXi=0 hixi:Then the sequene h0; h1; : : : ; hs is log-onave.The sequene h0; h1; : : : ; hs is alled the h-vetor of the ring. Orginally thequestion was to deide whether a given sequene an arise as the h-vetor of somering. In this sense the validity of the onjeture would imply that log-onavity wasa neessary ondition on the h-vetor.It is now known however [12, 3℄ that Stanley's onjeture is not true in general.Several natural weakenings have been onsidered, but are still open. For example,Aldo Cona and J�urgen Herzog onjetured that the h-vetor would be log-onavefor the speial ase where R is a ladder determinantal ring. (Note that ladder�In honour of Miriam Rubey, at the oasion of her seond birthday 65



determinantal rings are Cohen-Maaulay, as was shown in [8, Corollary 4.10℄, butnot neessarily Gorenstein.) We will prove the onjeture of Cona and Herzog inthe simplest ase, i.e., where R is a ladder determinantal ring ogenerated by 2� 2minors, see Corollary 4.6.In the ase of ladder determinantal rings the h-vetor has a nie ombinatorialinterpretation. This follows from work of Abhyankar and Kulkarni [1, 2, 10, 11℄,Bruns, Cona, Herzog, and Trung [4, 5, 6, 8℄. In the following paragraphs, whihare taken almost verbatim from [9℄, we will explain these matters.2 Ladders, ladder determinantal rings and non-interseting lattie pathsFirst we have to introdue the notion of a ladder:De�nition 2.1. Let X = (xi;j)0�i�b;0�j�a be a (b + 1)� (a + 1) matrix of indeter-minates. Let Y = (yi;j)0�i�b;0�j�a be another matrix of the same dimensions, withthe property that yi;j 2 f0; xi;jg, and if yi;j = xi;j and yi0;j0 = xi0;j0, where i � i0 andj � j 0 then yr;s = xr;s for all r and s with i � r � i0 and j � s � j 0. Suh a matrixY is alled a ladder.A ladder region L is a subset of Z2 with the property that if (i; j) and (i0; j 0) 2 L,i � i0 and j � j 0 then (r; s) 2 L for all r 2 fi; i+ 1; : : : ; i0g and s 2 fj 0; j 0 + 1; : : : ; jg.Clearly, a ladder region an be desribed by two weakly inreasing funtions L andL, suh that L is exatly the set of points f(i; j) : L(i) � j � L(i)g.We assoiate with Y a ladder region L � Z2 via (j; b � i) 2 L if and only ifyi;j = xi;j.In Figure 1.a an example of a ladder with a = 8 and b = 9 is shown, theorresponding ladder region is shown in Figure 1.b.Now we an de�ne the ring we are dealing with:De�nition 2.2. Given a (b+1)�(a+1) matrix Y whih is a ladder, �x a \bivetor"M = [u1; u2; : : : ; un j v1; v2; : : : ; vn℄ of integers with 1 � u1 < u2 < � � � < un � b + 1and 1 � v1 < v2 < � � � < vn � a + 1. By onvention we set un+1 = b + 2 andvn+1 = a + 2.Let K[Y℄ denote the ring of all polynomials over some �eld K in the yi;j's, where0 � i � b and 0 � j � a. Furthermore, let IM(Y) be the ideal in K[Y℄ that isgenerated by those t� t minors of Y that ontain only nonzero entries, whose rowsform a subset of the last ut � 1 rows or whose olumns form a subset of the lastvt � 1 olumns, t 2 f1; 2; : : : ; n+ 1g. Thus, for t = n + 1 the rows and olumns ofminors are unrestrited.The ideal IM(Y) is alled a ladder determinantal ideal generated by the minorsde�ned by M . We all RM(Y) = K[Y℄=IM(Y) the ladder determinantal ring ogen-erated by the minors de�ned byM , or, in abuse of language, the ladder determinantalring ogenerated by M . 66



Note that we ould restrit ourselves to the ase u1 = v1 = 1, beause all theelements of Y that are in one of the last u1 � 1 rows or in one of the last v1 � 1olumns are in the ideal.Next, we introdue the ombinatorial objets that will aompany us throughoutthe rest of this paper:De�nition 2.3. A two-rowed array of length k is a pair of stritly inreasing se-quenes of integers, both of length k. A two-rowed array T = � a1 a2 ::: akb1 b2 ::: bk � is boundedby A = (A1; A2) and E = (E1; E2), ifA1 � a1 < a2 < � � � < ak � E1 � 1and A2 + 1 � b1 < b2 < � � � < bk � E2:Given any subset L of Z2, we say that the two-rowed array T is in L, if (ai; bi) 2 Lfor i 2 f1; 2; : : : ; kg. By T Lk (A 7! E) we will denote the set of two-rowed arraysof length k, bounded by A and E whih are in L. The total length of a family oftwo-rowed arrays is just the sum of the lengths of its members.Let T1 = � a1 a2 ::: akb1 b2 ::: bk � and T2 = ( x1 x2 ::: xly1 y2 ::: yl ) be two-rowed arrays bounded byA(1) = (A(1)1 ; A(1)2 ) and E(1) = (E(1)1 ; E(1)2 ) and A(2) = (A(2)1 ; A(2)2 ) and E(2) =(E(2)1 ; E(2)2 ) respetively. Set ak+1 = E(1)1 and b0 = A(1)2 . We say that T1 and T2interset if there are indies I and J suh thatxJ � aI (�)bI�1 � yJwhere 1 � I � k+1 and 1 � J � l. A family of two-rowed arrays is non-intersetingif no two arrays in it interset.Note that a two-rowed array in T Lk (A 7! E) an be visualized by a lattiepath with east and north steps, that starts in A and terminates in E and hasexatly k north-east turns whih are all in L: Eah pair (ai; bi) of a two-rowed array� a1 a2 ::: akb1 b2 ::: bk � then orresponds to a north-east turn of the lattie path. It is easy tosee that Condition (�) holds if and only if the lattie paths orresponding to T1 andT2 interset.For an example see Figure 1., where the three two-rowed arraysT (1) = �2 36 7� , T (2) = �3 54 6� and T (3) = �2 4 61 3 4�bounded by A(1) = (0; 3), A(2) = (0; 2), A(3) = (0; 0) and E(1) = (5; 9), E(2) = (7; 9),E(3) = (8; 9) are shown as lattie paths. The points of the ladder-region L are drawnas small dots, the irles indiate the start- and endpoints and the big dots indiatethe north-east turns.
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Æ ÆÆ�������a. a ladder witha = 8 and b = 9 b. the orrespond-ing ladder region . a triple of non-interseting lattiepaths in this ladderFigure 1.3 A ombinatorial interpretation of the h-vetorof a ladder determinantal ringWe are now ready to state the theorem whih reveals the ombinatorial nature ofthe h-vetor of RM(Y) = K[Y℄=IM(Y), the ladder determinantal ring ogeneratedby M .Theorem 3.1. Let Y = (yi;j)0�i�b; 0�j�a be a ladder and let M = [u1; u2; : : : ; un jv1; v2; : : : ; vn℄ be a bivetor of integers with 1 � u1 < u2 < � � � < un � a + 1 and1 � v1 < v2 < � � � < vn � b + 1. For i 2 f1; 2; : : : ; ng letA(i) = (0; un+1�i � 1)E(i) = (a� vn+1�i + 1; b):Let L(n) = L be the ladder region assoiated with Y and for i 2 f1; 2; : : : ; n� 1g letL(i) = f(x; y) 2 L(i+1) : x � E(i)1 ; y � A(i)2 and (x+ 1; y � 1) 2 L(i+1)g:Finally, for i 2 f1; 2; : : : ; ng letB(i) = f(x; y) 2 L(i) : (x + 1; y � 1) =2 L(i)g:and let d be the ardinality of Sni=1B(i).Then, under the assumption that all of the points A(i) and E(i), i 2 f1; 2; : : : ; ng,lie inside the ladder region L, the Hilbert series of the ladder determinantal ringRM(Y) = K[Y℄=IM(Y) equalsX̀�0 dimK RM(Y)` z` = P`�0 ��T L` (A 7! E)�� z`(1� z)d :
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Here, RM(Y)` denotes the homogeneous omponent of degree ` in RM(Y) and��T L` (A 7! E)�� is the number of non-interseting families of two-rowed arrays withtotal length `, suh that the ith two-rowed array is bounded by A(i) and E(i) and isin L(i) nB(i) for i 2 f1; 2; : : : ; ng.The sets B(i), i 2 f1; 2; : : : ; ng an be visualized as being the lower-right bound-ary of L(i). Viewed as a path, there are exatly E(i)1 � A(i)1 + E(i)2 � A(i)2 + 1 lattiepoints on B(i), but not all of them are neessarily in L. However, if L is an upperladder, that is, (a; 0) 2 L, then this must be the ase and we haved = nXi=1 �E(i)1 � A(i)1 + E(i)2 � A(i)2 + 1�= nXi=1 (a� vn+1�i + 1 + b� un+1�i + 1 + 1)= n(a + b+ 3)� nXi=1 (ui + vi) ;as in [9℄.In Figure 2.a, an example for a ladder region L with a = 8 and b = 9 is given.The small dots represent elements of L, the irles on the left and on the top ofL represent the points A(i) and E(i), i 2 f1; 2; 3g that are spei�ed by the minorM = [1; 3; 4 j 1; 2; 4℄. The dotted lines indiate the lower boundary of L(i). Notethat the point (4; 9) is not an element of L. Therefore, in this example we haved = n(a+ b + 3)� nXi=1 (ui + vi)� 1 = 44:Proof. We will use results of J�urgen Herzog and Ngô Viêt Trung. In Setion 4 of[8℄, ladder determinantal rings are introdued and investigated.We equip the indeterminates xi;j, i 2 f0; 1; : : : ; bg and j 2 f0; 1; : : : ; ag with thefollowing partial order: xi;j � xi0;j0 if i � i0 and j � j 0:A t-antihain in this partial order is a family of elements xr1;s1; xr2;s2; : : : ; xrt;st suhthat r1 < r2 < � � � < rt and s1 < s2 < � � � < st. Thus, a t-antihain orrespondsto a sequene (s1; b� r1); (s2; b� r2); : : : ; (st; b� rt) of t points in the ladder regionassoiated with Y, where eah point lies stritly south-east of the previous ones.Let Dt be the union of the last ut � 1 rows and the last vt � 1 olumns ofY. Let �M(Y) be the simpliial omplex whose k-dimensional faes are subsetsof elements of Y of ardinality k + 1 whih do not ontain a t-antihain in Dt for
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Æ ÆÆ��� �� ������a. a ladder region witha = 8 and b = 9 b. a 10 dimensional faeof �[1;3;4j1;2;4℄(Y)Figure 2.
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Æ ÆÆ��� �� ������Figure 3. Construting a family of non-interseting lattie paths, suh that the ithpath stays above L(i), i 2 f1; 2; 3g � �� �� �� �� � �� � � � �� � � � �� � � � �� � � � �� � � � � � �� � � � � �� � � � �� � � � �012345
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Æ ÆÆ����Figure 4. The orresponding family of non-interseting lattie paths, where the ithpath has north-east turns only in L(i) for i 2 f1; 2; 3g
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t 2 f1; 2; : : : ; n+ 1g. Let fk be the number of k-dimensional faes of �M(Y) fork � 0. Then, Corollary 4.3 of [8℄ states, thatdimK RM(Y)` =Xk�0 �`� 1k �fk:In the following, we will �nd an expression for the numbers fk involving ertainfamilies of non-interseting lattie paths.In Figure 2.b, a 10-dimensional fae of �[1;3;4j1;2;4℄(Y) is shown, the elements ofthe fae are indiated by bold dots. We will desribe a modi�ation of Viennot`s`light and shadow proedure' (with the sun in the top-left orner) that produes afamily of n non-interseting lattie paths suh that the ith path runs from A(i) =(0; un+1�i) to E(i) = (a � vn+1�i; b) and has north-east turns only in L(i), for i 2f1; 2; : : : ; ng.Imagine a sun in the top-left orner of the ladder region and a wall along thelower-right border B(1) of L(1). Then eah lattie point (r; s) that is either in B(1) ororresponds to an element xs;b�r of the fae asts a `shadow' f(x; y) : x � r; y � sg.The �rst path starts at A(1), goes along the north-east border of this shadow andterminates in E(1). In the left-most diagram of Figure 3, this is aomplished forthe fae shown in Figure 2.b.In the next step, we remove the wall on B(1) and all the elements of the fae whihorrespond to lattie points lying on the �rst path. Then the proedure is iterated.See Figure 3 for an example. Let P be the resulting family of non-interseting lattiepaths.Now, for eah i 2 f1; 2; : : : ; ng, we remove all elements of the fae exept thosewhih orrespond to north-east turns of the ith path and do not lie on B(i). In theexample, (5; 8) is a north-east turn of the seond path but lies on B(2), therefore theorresponding element x1;5 of the fae is removed. On the other hand, (4; 5) lies onB(1), but is a nort-east turn of the third path, so the orresponding element x4;4 ofthe fae is kept.This set of north-east turns de�nes another family of non-interseting lattiepaths P 0 that has the property that the ith path has north-east turns only in L(i)for i 2 f1; 2; : : : ; ng.We now want to ount the number of faes of �M(Y) that redue under `lightand shadow' to a given family of lattie paths P 0 with this property. Clearly, P 0 anbe translated into a family P of non-interseting lattie paths suh that the ith pathdoes not go below B(i) for i 2 f1; 2; : : : ; ng. Note that the number of lattie pointson suh a family P of paths is always equal to d, independently of the given fae.Thus, if m is the number of north-east turns of P 0, there are� d�mk + 1�m�families of non-interseting lattie paths P that redue to P 0. 71



Hene, fk = � d�mk+1�m� ��T L` (A 7! E)�� and we obtainX̀�0 dimK RM(Y)` z` = X̀�0 �Xk�0 �`� 1k �fk�z`= X̀�0 Xk�0 �`� 1k �� k+1Xm=0� d�mk + 1�m� ��T Lm (A 7! E)�� �z`=Xm�0 ��T Lm (A 7! E)�� X̀�0 z`Xk�0 �`� 1k �� d�md� k � 1�;and if we sum the inner sum by means of the Vandermonde summation (see forexample [7℄, Setion 5.1, (5.27)),X̀�0 dimK RM(Y)` z` =Xm�0 ��T Lm (A 7! E)�� X̀�0 z`�d+ `�m� 1d� 1 �= Pm�0 ��T Lm (A 7! E)�� zm(1� z)d :
4 Log-onavity of the h-vetor in the ase M =[u1 j v1℄In this paper we will settle Stanley's onjeture when R is a ladder determinantalring ogenerated by M , where M is just a pair of integers, i.e., n = 1. We want tostress, however, that data strongly suggest that Cona and Herzog's onjeture isalso true for arbitrary n.By the preeding theorem, in the ase we are going to takle, the sumPsi=0 hixithat appears in the onjeture is the generating funtion Pk�0 ��T Lk (A 7! E)�� zk oftwo-rowed arrays bounded by A and E whih are in the ladder region L.As the bounds A and E will not be of any signi�ane throughout the rest ofthis paper, we will abbreviate T Lk (A 7! E) to T Lk . We will show that the h-vetoris log-onave by onstruting an injetion from T Lk+1 � T Lk�1 into T Lk � T Lk . Thisinjetion will involve some ut and paste operations that we now de�ne:De�nition 4.1. Let A and X be two stritly inreasing sequenes of integers, suhthat the length of X is the length of A minus two, i.e., A = (a1; a2; : : : ; ak+1) andX = (x1; x2; : : : ; xk�1) for some k � 1. A utting point of A and X is an indexl 2 f1; 2; : : : ; kg suh that al < xl; (�)and xl�1 < al+1; 72



where we require the inequalities to be satis�ed only if all variables are de�ned.Hene, 1 is a utting point if a1 < x1, and k is a utting point if xk�1 < ak+1.The image of A and X obtained by utting at l isa1 a2 : : : al�1 al �� xl xl+1 : : : xk�1x1 x2 : : : xl�1 ��al+1 al+2 : : : : : : : : ak+1Note that both the resulting sequenes have length k.Lemma 4.2. Let A = (a1; a2; : : : ; ak+1) and X = (x1; x2; : : : ; xk�1) be stritly in-reasing sequenes of integers, suh that the length of X is the length of A minustwo. Then there exists at least one utting point of A and X.Proof. If al � xl for l 2 f1; 2; : : : ; k � 1g then ak+1 > ak�1 � xk�1 and k is a uttingpoint. Otherwise, let l be minimal suh that al < xl. If l = 1 then 1 is a uttingpoint. Otherwise, beause of the minimality of l, we have al+1 > al�1 � xl�1, thus lis a utting point.De�nition 4.3. Let T = (T1; T2) 2 Tk+1�Tk�1 be a pair of two-rowed arrays. Thena top utting point of T is a utting point of the top rows of T1 and T2 and a bottomutting point of T is a utting point of the bottom rows of T1 and T2.A pair (l; m), where l; m 2 f1; 2; : : : ; kg, suh that l is a top utting point andm is a bottom utting point of T1 and T2 is a utting point of T . Cutting the toprows of T at l and the bottom rows at m we obtain the image of T . Note that bothof the two-rowed arrays in the image have length k. More pitorially, if l < m,a1 : : : : : : : : al xl : : : : : xm�1 : : : : : : : xk�1b1 : : : : : : : : : : : : : : bl+1 : : : : : bm ym : : : yk�1x1 : : : xl�1 al+1 : : : am : : : : : : : : : : : : : : ak+1y1 : : : : : : : : yl : : : ym�1 bm+1 : : : : : : : bk+1;and similarly if l � m.For T = (T1; T2) 2 T Lk+1 � T Lk�1, the pair (l; m) is an allowed utting point of T ,if both of the two-rowed arrays in the obtained image are in L.In Lemma 5.1 we will prove that every pair of two-rowed arrays in T Lk+1 � T Lk�1has at least one allowed utting point. This motivates the following de�nition:De�nition 4.4. Let T = (T1; T2) 2 T Lk+1�T Lk�1 a pair of two-rowed arrays as before.Consider all allowed utting points (�l; �m) of T . Selet those with ���l � �m�� minimal.Among those, let (l; m) be the pair whih omes �rst in the lexiographi order.Then we all (l; m) the optimal utting point of T .Now we are ready to state our main theorem, whih implies that Stanley's on-jeture is true, when R is a ladder determinantal ring ogenerated by a pair ofintegers M : 73



Theorem 4.5. Let L be a ladder region. Let T 2 T Lk+1�T Lk�1. De�ne I(T ) to be thepair of two-rowed arrays obtained by utting T at its optimal utting point. Then Iis well-de�ned and an injetion from T Lk+1 � T Lk�1 into T Lk � T Lk .Corollary 4.6. The h-vetor of the ladder determinantal ring ogenerated by M =[u1 j v1℄ is log-onave.Proof of the orollary. By Theorem 3.1, the h-vetor of this ring is equal to thegenerating funtion Pk�0 ��T Lk (A 7! E)�� zk of two-rowed arrays bounded by A =(0; u1 � 1) and E = (a � v1 + 1; b) whih are in the ladder region L. By thepreeding theorem, there is an injetion from T Lk+1(A 7! E) � T Lk�1(A 7! E) intoT Lk (A 7! E)� T Lk (A 7! E), thus��T Lk+1(A 7! E)�� � ��T Lk�1(A 7! E)�� � ��T Lk (A 7! E)��2 :We will split the proof of Theorem 4.5 in two parts. In Setion 5 we show that themapping I is well-de�ned, that is, for any pair of two-rowed arrays T 2 T Lk+1�T Lk�1there is an allowed utting point. Finally, in Setion 6, we show that I is indeed aninjetion.5 The mapping I is well-de�nedLemma 5.1. Let L be a ladder region. Then for every pair of two-rowed arrays inT Lk+1 � T Lk�1 there is an allowed utting point (l; m).For the proof of this lemma, we have to introdue some more notation: Let(T1; T2) 2 T Lk+1�T Lk�1 with T1 = � a1 a2 ::: ak+1b1 b2 ::: bk+1 � and T2 = ( x1 x2 ::: xk�1y1 y2 ::: yk�1 ). We say thatInequality (top) holds for an interval [; d℄ ifL(aj) � yj�1; (top)for j 2 [; d℄. Inequality (top) holds for an interval [; d℄ ifL(aj) � yj�1; (top)for j 2 [; d℄. Similarly, Inequality (bottom) holds for an interval [; d℄ ifL(xj�1) � bj; (bottom)for j 2 [; d℄. Inequality (bottom) holds for an interval [; d℄ ifL(xj�1) � bj; (bottom)for j 2 [; d℄. We say that any of these inequalities holds for a utting point (l; m)if it holds for the interval [l + 1; m℄ if l < m and for the interval [m + 1; l℄ if m < l.Clearly, a utting point (l; m) is allowed if and only if all of these inequalities holdfor it.Most of the work is done by the following lemma: 74



Lemma 5.2. Let T = (T1; T2) 2 T Lk+1 � T Lk�1, T1 = � a1 a2 ::: ak+1b1 b2 ::: bk+1 � and T2 =( x1 x2 ::: xk�1y1 y2 ::: yk�1 ). Let l and l be top utting points, suh that there is no top uttingpoint in the losed interval [l + 1; l � 1℄. Similarly, let m and m be bottom uttingpoints, suh that there is no bottom utting point in the losed interval [m+1; m�1℄.Then for both of the intervals [l + 1; l℄ and [m + 1; m℄,� either (top) or (bottom) hold,� either (top) or (bottom) hold,� either (top) or (top) hold,� either (bottom) or (bottom) hold.Let lmin; lmax; mmin and mmax be the minimal and maximal top and bottom uttingpoints. Then we have� (top) and (bottom) hold for [2;max(lmin; mmin)℄ and� (top) and (bottom) hold for [min(lmax; mmax); k℄.Proof. Suppose that (top) does not hold for the interval [l + 1; l℄. We laim that inthat ase there is an index j 2 [l + 1; l � 1℄ suh that aj < xj: For, by hypothesisthere is an index i 2 [l + 1; l℄ suh that L(ai) < yi�1. We have L(ai) < yi�1 �L(xi�1) and beause L is a weakly inreasing funtion, ai < xi�1. It follows thatai�1 < ai < xi�1 < xi. Thus, if i = l we hoose j = i� 1, otherwise j = i.The same statement is true if (bottom) does not hold for the interval [l+1; l℄: Inthis ase there must be an index i 2 [l + 1; l℄ suh that L(xi�1) > bi. We onludethat L(ai) � bi < L(xi�1) and thus ai < xi�1.Next, we will use indution to prove thatal < xl (��)and al+1 � xl�1for l 2 [l + 1; l � 1℄. We will �rst do an indution on l to establish the laim forl 2 [j; l � 1℄.We start the indution at l = j: Above we already found that aj < xj. Thereforewe must have aj+1 � xj�1, beause otherwise j would satisfy (�) and hene were atop utting point.Now suppose that (��) holds for a partiular l < l� 1. Then al+1 � xl�1 < xl+1,and, beause there is no top utting point at l + 1, we have al+2 � xl.Similarly, to establish (��) for l 2 [l+1; j℄ we do a reverse indution on l. Supposethat (��) holds for a partiular l > l + 1. Then al�1 < al+1 � xl�1, and, beausethere is no top utting point at l � 1, we have al � xl�2.
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Thus we obtain L(xl�1) � L(xl�2) � L(al) � bl, andL(xl�1) � L(al+1) � bl+1 � bl;whih means that (bottom) holds for the interval [l + 1; l℄.Furthermore, L(al+1) � L(al+2) � L(xl) � yl, andL(al) � L(xl�2) � yl�2 � yl�1;whih means that (top) holds for the interval [l + 1; l℄.Next we show that (top) and (bottom) hold for the interval [2; lmin℄: Assume thateither of these inequalities does not hold for the interval [2; lmin℄ and that [2; lmin℄does not ontain a top utting point exept lmin. Then the above reverse indutionimplies that a1 � a3 < x1, whih means that 1 is a top utting point. Thus, lmin = 1and the interval [2; lmin℄ is empty.The other assertions are shown in a ompletely analogous fashion.We are now ready to establish Lemma 5.1:Proof of Lemma 5.1. Let T = (T1; T2) 2 T Lk+1 � T Lk�1. By Lemma 4.2 there is atleast one utting point (l; m) of T . Let lmin; lmax; mmin and mmax be the minimaland maximal top and bottom utting points of T as before.If there is an index j whih is a top and a bottom utting point of T , then {trivially { (j; j) is an allowed utting point. Otherwise, we have to show that thereis a utting point (l; m) for whih (top), (top), (bottom), and (bottom) hold. Supposethat this is not the ase.For the indutive proof whih follows, we have to introdue a onvenient indexingsheme for the sequene of top and bottom utting points. Letm1;0 = maxfm : m < lmin and m is a bottom utting pointg;mi;0 = maxfm : m < li�1;1 and m is a bottom utting pointg for i > 1,and li;0 = maxfl : l < mi;1 and l is a top utting pointg for i � 1,where mi;j+1 is the bottom utting point diretly after mi;j, and li;j+1 is the toputting point diretly after li;j. Furthermore, we set l0;1 = lmin.More pitorially, we have the following sequene of top and bottom utting pointsfor i � 1:� � � < mi;0 < li�1;1 < li�1;2 < � � � < li;0 < mi;1 < mi;2 < � � � < mi+1;0 < � � �If mmin > lmin, then m1;0 does not exist, of ourse. Note that there are no bottomutting points between li;1 and li+1;0, and there are no top utting points betweenmi;1 and mi+1;0. 76



Suppose �rst that mmin < lmin. By indution on i, we will show that (top) and(bottom) hold for the utting points (li�1;1; mi;0), where i � 1. By Lemma 5.2 weknow that (top) and (bottom) are satis�ed for the utting point (lmin; m1;0), beause[m1;0 + 1; lmin℄ � [2; lmin℄. It remains to perform the indution step, whih we willdivide into �ve simple steps.Step 1. (top) and (bottom) hold for the interval [mi;0 + 1; li�1;1℄. This is just arestatement of the indution hypothesis, i.e., that (top) and (bottom) hold for theutting point (li�1;1; mi;0).Step 2. Either (bottom) or (top) does not hold for the interval [mi;0 + 1; mi;1℄.Beause of Step 1, not both of (bottom) and (top) an hold for (li�1;1; mi;0), lestthis was an allowed utting point. Thus either (bottom) or (top) does not hold for[mi;0+1; li�1;0+1℄. This interval is ontained in [mi;0+1; mi;1℄, thus the inequalities(bottom) and (top) annot hold on this interval either.Step 3. (top) and (bottom) hold for [li;0 + 1; mi;1℄. Suppose that (bottom) doesnot hold for [mi;0+1; mi;1℄. Then, by Lemma 5.2 we obtain that (top) and (bottom)hold for [mi;0 + 1; mi;1℄, beause this interval ontains no bottom utting pointsexept mi;1. The same is true, if (top) does not hold for [mi;0 + 1; mi;1℄. Beause[li;0 + 1; mi;1℄ is a subset of this interval, (top) and (bottom) hold for the uttingpoint (li;0; mi;1), or, equivalently, for the interval [li;0 + 1; mi;1℄.Step 4. Either (bottom) or (top) does not hold for [li;0 + 1; li;1℄. Beause ofStep 3, not both of (bottom) and (top) an hold for the utting point (li;0; mi;1), norfor the greater interval [li;0 + 1; li;1℄.Step 5. (top) and (bottom) hold for [mi+1;0 + 1; li;1℄. The interval [li;0 + 1; li;1℄does not ontain a top utting point exept li;1, thus by Lemma 5.2 and Step 4 wesee that (top) and (bottom) hold. Finally, beause [mi+1;0 + 1; li;1℄ � [li;0 + 1; li;1℄,(top) and (bottom) hold for the utting point (li;1; mi+1;0).If lmax > mmax, then we enounter a ontradition: Let r be suh that mr;0 =mmax. We have just shown that (top) and (bottom) hold for the utting point(lr�1;1; mr;0). Furthermore, by Lemma 5.2, (bottom) and (top) hold for [mr;0; k℄and thus also for (lr�1;1; mr;0). Hene, this would be an allowed utting point,ontraditing our hypothesis.If lmax < mmax, let r be suh that lr;0 = lmax. By the indution (Step 3) we�nd that (top) and (bottom) hold for the utting point (lr;0; mr;1). Again, beauseof Lemma 5.2, we know that (bottom) and (top) holds for [lr;0; k℄ and thus also for(lr;0; mr;1). Hene, we had an allowed utting point in this ase also.The ase that m1 > l1 is ompletely analogous.6 The mapping I is an injetionLemma 6.1. The mapping I de�ned above is an injetion. 77



Proof. Suppose that I(T ) = I(T 0) for T = (T1; T2) and T 0 = (T 01; T 02), suh that Tand T 0 are elements of T Lk+1 � T Lk�1. Let (l; m) be the optimal utting point of T ,and let (l0; m0) be the optimal utting point of T 0.Observe that we an assume min(l; m; l0; m0) = 1, beause the elements of Tand T 0 with index less than or equal to this minimum retain their position in I(T ).Likewise, we an assume that max(l; m; l0; m0) = k.Furthermore, we an assume that l � l0, otherwise we exhange the meaning ofT and T 0. Thus, we have to onsider the following twelve situations:(1) 1 = l � l0 � m � m0 = k(2) 1 = l � l0 � m0 � m = k(3) 1 = l � m � l0 � m0 = k(4) 1 = l � m � m0 � l0 = k(5) 1 = l � m0 � l0 � m = k(6) 1 = l � m0 � m � l0 = k(7) 1 = m � l � l0 � m0 = k(8) 1 = m � l � m0 � l0 = k(9) 1 = m � m0 � l � l0 = k(10) 1 =m0 � l � l0 � m = k(11) 1 =m0 � l � m � l0 = k(12) 1 =m0 � m � l � l0 = kWe shall divide these twelve ases into two portions aording to whether l � m ornot.A: l �mIn the Cases (1){(6), (10) and (11) we have l � m, thus the pair of two-rowed arraysT = (T1; T2) 2 T Lk+1 � T Lk�1 looks likea1 : : : : : : : : al j al+1 : : : : : : : : : : : : : : : : : : : : : : ak+1b1 : : : : : : : : : : : : : : : : : : : : : : : : bm j bm+1 : : : : : bk+1x1 : : : xl�1 j xl : : : : : : : : : : : : : : : : : : : : : xk�1y1 : : : : : : : : : : : : : : : : : : ym�1 j ym : : : : yk�1:Cutting at (l; m) we obtain I(T ) 2 T Lk � T Lk :a1 : : : : : : : : al j xl : : : : : : : : : : : : : : : : : : : : xk�1b1 : : : : : : : : : : : : : : : : : : : : : : : : bm j ym : : : yk�1x1 : : : xl�1 j al+1 : : : : : : : : : : : : : : : : : : : : : : : : ak+1y1 : : : : : : : : : : : : : : : : : : ym�1 j bm+1 : : : : : : : bk+1:If l = 1, then the top row of the seond array in I(T ) is (a2; a3; : : : ; ak+1), if m = k,then the bottom row of the �rst array in I(T ) is (b1; b2; : : : ; bk).
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Case (1), 1 = l � l0 �m �m0 = kGiven that I(T ) = I(T 0), the pair T 0 an be expressed in terms of the entries of Tas follows: a1 j x1 : : xl0�1 ..... al0+1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : ak+1b1 : : : : : : : : : : : : : : : : : : : : : : : : : bm j ym : : : : yk�1 ..... bk+1j a2 : : al0 ..... xl0 : : : : : : : : : : : : : : : : : : : : : : xk�1y1 : : : : : : : : : : : : : : : : : : : ym�1 j bm+1 : : bk .....: (T 0)The vertial dots indiate the ut (l0; m0) whih results in I(T 0). We show that theutting point (l; m) = (1; m), indiated above by the vertial lines, is in fat anallowed utting point for T 0: Cutting at (1; m) yieldsa1 j a2 : : : : al0 ..... xl0 : : : : : xm�1 : : : : : : : : : : xk�1b1 : : : : : : : : : : : : : : : : : : : : : : : : : bm j bm+1 : : : : bk .....j x1 : : xl0�1 ..... al0+1 : : am : : : : : : : : : : : : : : : : : ak+1y1 : : : : : : : : : : : : : : : : : : : ym�1 j ym : : : : yk�1 ..... bk+1: (I(T 0))Note, that this is the same pair of two-rowed arrays we obtain by utting T at(l0; m0). We have to hek that the pair of two-rowed arrays (I(T 0)) is in the ladderregion.Clearly,(a2; b2); (a3; b3); : : : ; (al0; bl0) and (x1; y1); (a2; b2); : : : ; (xl0�1; yl0�1)are in the ladder region, beause these pairs appear also in T . Furthermore, thepairs (xl0 ; bl0+1); (xl0+1; bl0+2); : : : (xm�1; bm)and (al0+1; yl0); (al0+2; yl0+1); : : : (am; ym�1)appear in I(T ) and are therefore in the ladder region, too. All the other pairs, i.e.,(a1; b1) and (xm; bm+1); (xm+1; bm+2); : : : ; (xk�1; bk);(am+1; ym); (am+2; ym+1); : : : ; (ak; yk�1) and (ak+1; bk+1);are una�eted by the ut and appear in T 0.Thus we have that (l; m) and (l0; m0) are allowed uts for T and T 0. We requiredthat (l; m) is optimal for T and that (l0; m0) is optimal for T 0, therefore we musthave l = l0 and m = m0.In all the other ases the reasoning is very similar. Thus we only print the pairsof two-rowed arrays T 0 and I(T 0) and leave it to the reader to hek that I(T 0) is inthe ladder region.
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Case (2), 1 = l � l0 �m0 �m = kThe pair T 0 an be expressed in terms of the entries of T as follows:a1 j x1 : : xl0�1 ..... al0+1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ak+1b1 : : : : : : : : : : : : : : : : : : : : : : : : : : bm0 ..... ym0 : : : : yk�1 j bk+1j a2 : : al0 ..... xl0 : : : : : : : : : : : : : : : : : : : : : : : xk�1y1 : : : : : : : : : : : : : : : : : : : ym0�1 ..... bm0+1 : : : bk j: (T 0)Cutting at (l; m) yieldsa1 j a2 : : : : al0 ..... xl0 : : : : : xm0�1 : : : : : : : xk�1b1 : : : : : : : : : : : : : : : : : : : : : : : : : : bm0 ..... ym0 : : yk�1 jj x1 : : xl0�1 ..... al0+1 : : am0 : : : : : : : : : : : : : : ak+1y1 : : : : : : : : : : : : : : : : : : : ym0�1 ..... bm0+1 : : : bk j bk+1: (I(T 0))
Case (3), 1 = l �m � l0 �m0 = kThe pair T 0 an be expressed in terms of the entries of T as follows:a1 j x1 : : : : : : : : : : : : : : : : : : : : xl0�1 ..... al0+1 : : : : : : : : : : ak+1b1 : : : : : : : : : bm j ym : : : : : : : : : : : : : : : : : : : : : yk�1 ..... bk+1j a2 : : : : : : : : : : : : : : : : : : : : al0 ..... xl0 : : : : xk�1y1 : : ym�1 j bm+1 : : : : : : : : : : : : : : : : : : : bk .....: (T 0)Cutting at (l; m) yieldsa1 j a2 : : : : : : : : : : : : : : : : : : : : : : al0 ..... xl0 : : : : xk�1b1 : : : : : : : : : bm j bm+1 : : : : : : : : : : : : : : : : : : : : : bkj x1 : : : : : : : : : : : : : : : : : : : xl0�1 ..... al0+1 : : : : : : : : ak+1y1 : : ym�1 j ym : : : : : : : : : : : : : : : : : : : : : yk�1 ..... bk+1: (I(T 0))
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Case (4), 1 = l �m �m0 � l0 = kThe pair T 0 an be expressed in terms of the entries of T as follows:a1 j x1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xk�1 ..... ak+1b1 : : : : : : : : : bm j ym : : : ym0�1 ..... bm0+1 : : : : : : : : : : : bk+1j a2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ak .....y1 : : ym�1 j bm+1 : : bm0 ..... ym0 : : : : : yk�1: (T 0)Cutting at (l; m) yieldsa1 j a2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ak .....b1 : : : : : : : : : bm j bm+1 : : : : : bm0 ..... ym0 : : : : yk�1j x1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xk�1 ..... ak+1y1 : : ym�1 j ym : : : : ym0�1 ..... bm0+1 : : : : : : : : : bk+1: (I(T 0))
Case (5), 1 = l �m0 � l0 �m = kThe pair T 0 an be expressed in terms of the entries of T as follows:a1 j x1 : : : : : : : : : : : : : : : : : : : : : xl0�1 ..... al0+1 : : : : : : : : : : ak+1b1 : : : : : : : : : bm0 ..... ym0 : : : : : : : : : : : : : : : : : : : : : yk�1 j bk+1j a2 : : : : : : : : : : : : : : : : : : : : : al0 ..... xl0 : : : : xk�1y1 : : ym0�1 ..... bm0+1 : : : : : : : : : : : : : : : : : : : : bk j: (T 0)Cutting at (l; m) yieldsa1 j a2 : : : : : : : : : : : : : : : : : : : : : : : al0 ..... xl0 : : xk�1b1 : : : : : : : : : bm0 ..... ym0 : : : : : : : : : : : : : : : : : : : yk�1 jj x1 : : : : : : : : : : : : : : : : : : : : : xl0�1 ..... al0+1 : : : : : : ak+1y1 : : ym0�1 ..... bm0+1 : : : : : : : : : : : : : : : : : : : : bk j bk+1: (I(T 0))
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Case (6), 1 = l �m0 �m � l0 = kThe pair T 0 an be expressed in terms of the entries of T as follows:a1 j x1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xk�1 ..... ak+1b1 : : : : : : : : : bm0 ..... ym0 : : ym�1 j bm+1 : : : : : : : : : : : bk+1j a2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ak .....y1 : : ym0�1 ..... bm0+1 : : : bm j ym : : : : yk�1: (T 0)Cutting at (l; m) yieldsa1 j a2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ak .....b1 : : : : : : : : : bm0 ..... ym0 : : ym�1 j ym : : : : yk�1j x1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xk�1 ..... ak+1y1 : : ym0�1 ..... bm0+1 : : : bm j bm+1 : : : : : : : : : bk+1: (I(T 0))
Case (10), 1 = m0 � l � l0 �m = kThe pair T 0 an be expressed in terms of the entries of T as follows:a1 : : : : : : : : al j xl : : xl0�1 ..... al0+1 : : : : : : : : : : ak+1b1 ..... y1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : yk�1 j bk+1x1 : : xl�1 j al+1 : : al0 ..... xl0 : : : : xk�1..... b2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : bk j: (T 0)Cutting at (l; m) yieldsa1 : : : : : : : : al j al+1 : : : : al0 ..... xl0 : : xk�1b1 ..... y1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : yk�1 jx1 : : xl�1 j xl : : : : xl0�1 ..... al0+1 : : : : : : ak+1..... b2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : bk j bk+1: (I(T 0))
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Case (11), 1 = m0 � l �m � l0 = kThe pair T 0 an be expressed in terms of the entries of T as follows:a1 : : : : : : : : al j xl : : : : : : : : : : : : : : : : : : : : : : xk�1 ..... ak+1b1 ..... y1 : : : : : : : : : : : : : : : : : : ym�1 j bm+1 : : : : : : : : : : : bk+1x1 : : xl�1 j al+1 : : : : : : : : : : : : : : : : : : : ak .......... b2 : : : : : : : : : : : : : : : : : bm j ym : : : : yk�1: (T 0)Cutting at (l; m) yieldsa1 : : : : : : : : al j al+1 : : : : : : : : : : : : : : : : : : : : ak .....b1 ..... y1 : : : : : : : : : : : : : : : : : : ym�1 j ym : : : : yk�1x1 : : xl�1 j xl : : : : : : : : : : : : : : : : : : : xk�1 ..... ak+1..... b2 : : : : : : : : : : : : : : : : : bm j bm+1 : : : : : : : : : bk+1: (I(T 0))
B: m � lIn the Cases (7){(9) and (12) we have m � l, thus the pair of two-rowed arraysT = (T1; T2) 2 T Lk+1 � T Lk�1 looks likea1 : : : : : : : : : : : : : : : : : : : : : : : : : : al j al+1 : : : : : ak+1b1 : : : : : : : : : bm j bm+1 : : : : : : : : : : : : : : : : : : : : bk+1x1 : : : : : : : : : : : : : : : : : : : : xl�1 j xl : : : : xk�1y1 : : : ym�1 j ym : : : : : : : : : : : : : : : : : : : : yk�1:Cutting at (l; m) we obtain I(T ) 2 T Lk � T Lk :a1 : : : : : : : : : : : : : : : : : : : : : : : : : : al j xl : : : xk�1b1 : : : : : : : : : bm j ym : : : : : : : : : : : : : : : : : : yk�1x1 : : : : : : : : : : : : : : : : : : : : xl�1 j al+1 : : : : : : ak+1y1 : : : ym�1 j bm+1 : : : : : : : : : : : : : : : : : : : : : : bk+1:
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Case (7), 1 = m � l � l0 �m0 = kThe pair T 0 an be expressed in terms of the entries of T as follows:a1 : : : : : : : : al j xl : : xl0�1 ..... al0+1 : : : : : : : : : : ak+1b1 j y1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : yk�1 ..... bk+1x1 : : xl�1 j al+1 : : al0 ..... xl0 : : : : xk�1j b2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : bk .....: (T 0)Cutting at (l; m) yieldsa1 : : : : : : : : al j al+1 : : : : al0 ..... xl0 : : : : xk�1b1 j b2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : bk .....x1 : : xl�1 j xl : : : : xl0�1 ..... al0+1 : : : : : : : : ak+1j y1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : yk�1 ..... bk+1: (I(T 0))
Case (8), 1 = m � l �m0 � l0 = kThe pair T 0 an be expressed in terms of the entries of T as follows:a1 : : : : : : : : al j xl : : : : : : : : : : : : : : : : : : : : : : : : xk�1 ..... ak+1b1 j y1 : : : : : : : : : : : : : : : : : : ym0�1 ..... bm0+1 : : : : : : : : : : : bk+1x1 : : xl�1 j al+1 : : : : : : : : : : : : : : : : : : : : : ak .....j b2 : : : : : : : : : : : : : : : : : bm0 ..... ym0 : : : : : yk�1: (T 0)Cutting at (l; m) yieldsa1 : : : : : : : : al j al+1 : : : : : : : : : : : : : : : : : : : : : : : ak .....b1 j b2 : : : : : : : : : : : : : : : : : : : : bm0 ..... ym0 : : : : yk�1x1 : : xl�1 j xl : : : : : : : : : : : : : : : : : : : : : : : xk�1 ..... ak+1j y1 : : : : : : : : : : : : : : : : : ym0�1 ..... bm0+1 : : : : : : : : : bk+1: (I(T 0))
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Case (9), 1 = m �m0 � l � l0 = kThe pair T 0 an be expressed in terms of the entries of T as follows:a1 : : : : : : : : : : : : : : : : : : : : : : : : : : : al j xl : : : : : xk�1 ..... ak+1b1 j y1 : : : ym0�1 ..... bm0+1 : : : : : : : : : : : : : : : : : : : : : : : : : : bk+1x1 : : : : : : : : : : : : : : : : : : : : : xl�1 j al+1 : : ak .....j b2 : : bm0 ..... ym0 : : : : : : : : : : : : : : : : : : : : yk�1: (T 0)Cutting at (l; m) yieldsa1 : : : : : : : : : : : : : : : : : : : : : : : : : : : al j al+1 : : : : ak .....b1 j b2 : : : : : bm0 ..... ym0 : : : : : : : : : : : : : : : : : : : : yk�1x1 : : : : : : : : : : : : : : : : : : : : : xl�1 j xl : : : : xk�1 ..... ak+1j y1 : : ym0�1 ..... bm0+1 : : : : : : : : : : : : : : : : : : : : : : : : : bk+1: (I(T 0))
Case (12), 1 = m0 �m � l � l0 = kThe pair T 0 an be expressed in terms of the entries of T as follows:a1 : : : : : : : : : : : : : : : : : : : : : : : : : al j xl : : : : : xk�1 ..... ak+1b1 ..... y1 : : ym�1 j bm+1 : : : : : : : : : : : : : : : : : : : : : : : : : : bk+1x1 : : : : : : : : : : : : : : : : : : : xl�1 j al+1 : : ak .......... b2 : : bm j ym : : : : : : : : : : : : : : : : : : : : yk�1: (T 0)Cutting at (l; m) yieldsa1 : : : : : : : : : : : : : : : : : : : : : : : al j al+1 : : : : ak .....b1 ..... y1 : : ym�1 j ym : : : : : : : : : : : : : : : : : : : : yk�1x1 : : : : : : : : : : : : : : : : : xl�1 j xl : : : : xk�1 ..... ak+1..... b2 : : bm j bm+1 : : : : : : : : : : : : : : : : : : : : : : : : bk+1: (I(T 0))
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