
ar
X

iv
:0

90
7.

47
61

v1
 [

m
at

h.
C

O
]

 2
7

Ju
l 2

00
9

CHIP-FIRING GAMES, G-PARKING FUNCTIONS, AND

AN EFFICIENT BIJECTIVE PROOF OF THE MATRIX-TREE THEOREM

FARBOD SHOKRIEH

Abstract. Kirchhoff’s matrix-tree theorem states that the number of spanning trees of a graph
G is equal to the value of the determinant of the reduced Laplacian of G. We outline an efficient
bijective proof of this theorem, by studying a canonical finite abelian group attached to G whose
order is equal to the value of same matrix determinant. More specifically, we show how one can
efficiently compute a bijection between the group elements and the spanning trees of the graph. The
main ingredient for computing the bijection is an efficient algorithm for finding the unique G-parking
function (reduced divisor) in a linear equivalence class defined by a chip-firing game. We also give
applications, including a new and completely algebraic algorithm for generating random spanning
trees. Other applications include algorithms related to chip-firing games and sandpile group law, as
well as certain algorithmic problems about the Riemann-Roch theory on graphs.

1. Introduction

1.1. Overview. Every graph G has a canonical finite abelian group attached to it. This group has
appeared in the literature under many different names; in theoretical physics it was first introduced
as the “abelian sandpile group” or “abelian avalanche group” in the context of self-organized critical
phenomena ([4, 20, 21]). In arithmetic geometry, this group appeared as the “group of components”
in the study of degenerating algebraic curves ([30]). In algebraic graph theory this group appeared
under the name “Jacobian group” or “Picard group” in the study of flows and cuts in graphs ([3]).
The study of a certain chip-firing game on graphs led to the definition of this group under the name
“critical group” ([9, 10]).

The order of this group is equal to the value of the determinant of the reduced Laplacian of G
(see, e.g. Lemma 2.3). We know from Kirchhoff’s famous matrix-tree theorem that the value of the
same determinant gives the number of spanning trees of the graph ([27]). So, one might wonder
whether there is a nice and explicit bijection between the elements of the group and the spanning
trees of the graph; existence of such a bijection would independently prove the matrix-tree theorem,
and might have other algorithmic consequences. It is rather clear that such a bijection cannot be
fully canonical, as that would imply a particular spanning tree is distinguished, and corresponds to
the identity of the group. Therefore, one needs to make some choices to be able to write down a
bijection. If one fixes a vertex q, then there is a canonical representative for each element of the
group, called the G-parking function (based at q) or q-reduced divisor (see, e.g., [21, 19, 31, 5] , or
Proposition 2.5). The main result of this paper is an algorithm to find this canonical representative
efficiently. Once we have this, we can use one of the bijections in [12, 18, 16, 7] to find the
corresponding spanning tree.

This easy-to-compute bijection from the “Jacobian group” to the set of spanning trees of the graph
gives new insight into the matrix-tree theorem. It also may lead to new algorithms for graphs and

Date: April 12, 2009.
2000 Mathematics Subject Classification. 05C05, 05C50, 05C85.
I would like to thank Matthew Baker for recommending this problem to me, and for many helpful discussions.

Thanks also to Richard Lipton, Prasad Tetali, and Arash Asadi for their helpful comments.
1

http://arxiv.org/abs/0907.4761v1

2 FARBOD SHOKRIEH

their spanning trees. For example, as an immediate corollary, if one picks a random element of the
group - which is a trivial task - and constructs the bijection, then one gets a random spanning tree.
This yields a new and completely algebraic approach for sampling a random spanning tree from the
set of spanning trees of the graph. With this approach, it is very easy to sample multiple spanning
trees with certain “joint” distribution. We believe there may be other algorithmic applications for
this bijection.

The theory of G-parking functions relates nicely to a number of problems in theory of chip-firing
games , and to the Riemann-Roch theory on finite graphs. As a result of our main algorithm, we
are able to give efficient algorithms for a number of problems in these areas. The question of finding
reduced divisors (G-parking functions) was first posed by Henrik Lenstra to Baker and Norine,
in connection with Riemann-Roch theory on finite graphs in [5], through private communication.
The problem of finding the “sandpile prediction” in polynomial-time was listed as an open problem
by László Babai in [2] (§10.3). Our main algorithm also settles this open problem, as the sandpile
predictions and critical configurations are, in a sense, dual to the reduced divisors; see Remark 3.14.

1.2. Some related work. The term “G-parking functions” was first introduced in [31]. The
reason for this terminology is that they can be considered as a natural generalization of “parking
functions”. The theory of parking functions was first considered in connection with hash functions
([28]). The original problem was phrased in terms of cars and parking spots. The theory of parking
functions has since been developed, with links many different areas including priority queues ([22]),
representation theory ([24]), and noncrossing partitions ([32]). Although the explicit definition was
first given in [31], the concept had appeared (sometimes in disguise) in many previous work (see,
e.g.,[20, 21, 9, 11, 19]). The fact that G-parking functions provide a canonical representative for
each element of the Jacobian appear implicitly in [21, 19], and explicitly in [31, 5].

The problem of giving explicit bijection between G-parking functions and spanning trees of graph
is studied extensively in the literature (see, e.g., [12, 18, 16, 7]).

The relationship between chip-firing games and the Jacobian group is studied in [9, 10]. Some
algorithmic aspects of the chip-firing games are studied in [34, 13, 33]; see §A.2 for a discussion on
how [34] relates to our work.

The Uniform Spanning Tree (UST) problem has been extensively studied in the literature and
there are two known types of algorithms: determinant based algorithms (e.g. [23, 17, 29]), and
random walk based algorithms (e.g. [15, 1, 35]).

More related work is given in the paper.

The paper is structured as follows. In §2 we provide the relevant definitions and tools. In §3 we
first state and prove Dhar’s algorithm which can efficiently check whether a given divisor is reduced.
Then we give our main algorithm for computing the reduced divisors and prove its correctness and
efficiency. We then give the explicit and efficient bijection between the Jacobian group and the set
of spanning trees of the graph. In §A we outline some applications of our main results, including a
new approach to the Uniform Spanning Tree problem, efficient computation of the group law in the
critical and sandpile group, efficient algorithm for the chip-firing game of Baker and Norine, and
the relation to the Riemann-Roch theory on finite graphs.

2. Definitions and background

2.1. Notation and Terminology. Throughout this paper, a graph means a finite, unweighted
multigraph with no loops. All graphs are assumed to be connected. For a graph G, the set of
vertices is denoted by V (G), and the set of edges is denoted by E(G). Throughout this paper, n
and m denote the number of vertices and edges, respectively.

CHIP-FIRING GAMES, G-PARKING FUNCTIONS, AND THE MATRIX-TREE THEOREM 3

Let Div(G) be the free abelian group generated by V (G). One can think of elements of Div(G)
as formal integer linear combination of vertices

Div(G) = {
∑

v∈V (G)

av(v) : av ∈ Z} .

By analogy with the algebraic curve case, elements Div(G) are called Divisors on G. For a divisor
D, the coefficient av of (v) in D is denoted by D(v).

M(G) = Hom(V (G), Z) is, by definition, the abelian group consisting of all integer-valued func-
tions on the vertices. For A ⊆ V (G), χA ∈ M(G) denotes the {0, 1}-valued characteristic function
of A. Note that {χ{v}}v∈V (G) generates M(G) as a Z-module.

The Laplacian operator ∆ : M(G) → Div(G) is given by the formula

∆(f) =
∑

v∈V (G)

∆v(f)(v) ,

where

∆v(f) =
∑

{v,w}∈E(G)

(f(v) − f(w)) .

Let {v1, . . . , vn} be an ordering of V (G). With respect to this ordering, the Laplacian matrix
Q associated to G is the n × n matrix Q = (qij), where qii is the degree of vertex vi, and −qij

(i 6= j) is the number of edges connecting vi and vj . It is well-known (and easy to verify) that Q is
symmetric, has rank n − 1, and that the kernel of Q is spanned by 1, the all-one vector1 (see, e.g.,
[8, 14]).

Using the ordering {v1, . . . , vn} of vertices, there exist isomorphisms between abelian groups
Div(G),M(G), and the Z-module of n × 1 column vectors having integer coordinates. Under
these isomorphisms the Laplacian operator ∆ : M(G) → Div(G) coincides with the Z-module
homomorphism Q : Z

n → Z
n. More specifically, if [D] denotes the column vector corresponding to

D ∈ Div(G), and [f] denotes the column vector corresponding to f ∈ M(G), then [∆(f)] = Q[f].

2.2. Chip-firing games on graphs. Following [5] we define an equivalence relation ∼ on the
group Div(G) as follows.

Definition. For D1,D2 ∈ Div(G), D1 ∼ D2 if and only if D1 −D2 is in the image of ∆ : M(G) →
Div(G).

It is an easy exercise to show that this is indeed an equivalence relation. This equivalence
relation is closely related to notion of “chip-firing games” played on the vertices of the graph (see,
e.g., [13, 9, 10, 5]). For a given divisor D ∈ Div(G), the integer D(v) can be viewed as the amount
of dollars that is assigned to the vertex v, and D can be viewed as a configuration of the economy
in the society modeled by the graph. If D(v) < 0 then the vertex v is said to be in debt2. A move
in this “one-player game” consists of choosing a vertex and having it borrow one dollar from each
of its neighbors, or give (“fire”) one dollar to each of its neighbors.

The following easy lemma is proved in [5].

Lemma 2.1. For D1,D2 ∈ Div(G), D1 ∼ D2 if and only if starting from the configuration D1 one
can reach to the configuration D2 , through a sequence of moves.

1We again emphasize that G has no loops.
2Since negative assignments to vertices are permitted, we prefer to use the term “dollar” instead of “chip”. This

term was first used by Biggs in [9, 10].

4 FARBOD SHOKRIEH

2.3. The Jacobian of a finite graph. Consider the group homomorphism deg : Div(G) →
Z defined by deg(D) =

∑

v∈V (G) D(v). Denote by Div0(G) the kernel of this homomorphism,

consisting of divisors of degree zero. Denote by Prin(G) the image of the Laplacian operator ∆ :
M(G) → Div(G).

Lemma 2.2. Prin(G) ⊆ Div0(G), and both Prin(G) and Div0(G) are free Z-modules of rank n− 1.

Proof is easy and is left as an exercise.

As a corollary, the quotient group

Jac(G) = Div0(G)/Prin(G)

is well-defined and is a finite abelian group. Following [3], it is called the Jacobian of G. By the
fundamental theorem of finitely generated abelian groups, this group is isomorphic to direct sum of
finite cyclic groups.

If we choose an ordering of vertices it is easy to see that Jac(G) is the torsion part3 of the cokernel
of the Z-module homomorphism Q : Z

n → Z
n. The following result is an easy consequence of this

observation.

Lemma 2.3. The order of Jac(G) is equal to the value of the determinant of the reduced Laplacian
of G. Invariant factors and generators of Jac(G) can efficiently be computed by finding the Smith
normal form of the Laplacian matrix of the graph G.

Remark 2.4. Of course the value of the determinant of the reduced Laplacian of G gives the number
of spanning trees of G. This is Kirchhoff’s matrix-Tree Theorem ([27]). We will not assume the
knowledge of this famous theorem and, instead, we will use Lemma 2.3 to give a new bijective proof,
with computable bijection, of the matrix-tree theorem in §3.5. Indeed, one can think of Lemma 2.3
as the generalization of Kirchhoff’s theorem; the matrix-tree theorem only computes the order of
the group and forgets the structure!.

2.4. Reduced divisors or G-parking functions. For A ⊆ V (G) and v ∈ A, let outdegA(v)
denote the number of edges of G having v as one endpoint and whose other endpoint lies in V (G)\A.

Definition. Fix a vertex q ∈ V (G). A function f : V (G)\{q} −→ Z is called a q-reduced function
(or G-parking function based at q) , if it satisfies the following two conditions:

• f(v) ≥ 0 for all v ∈ V (G)\{q}.
• For every non-empty set A ⊆ V (G)\{q}, there exists a vertex v ∈ A such that f(v) <

outdegA(v).

This definition might seem unmotivated and rather technical for the moment. Its significance
will only be clear after Proposition 2.5.

In this paper, following [5], we use the term q-reduced. Moreover, a divisor D ∈ Div(G) is called
q-reduced if the map v 7→ D(v), defined for v ∈ V (G)\{q}, is a G-parking function (relative to the
base vertex q).

The significance of q-reduced divisors is mainly due to the following proposition. This was
discovered by several different authors (see, e.g., [21, 19, 31, 5])

Proposition 2.5. Fix a base vertex q ∈ V (G). Then for every D ∈ Div(G), there exists a unique
q-reduced divisor D′ ∈ Div(G) such that D′ ∼ D.

Remark 2.6. (i) None of the proofs in the literature gives to an efficient algorithm for computing
such D′ ∼ D. This work is done in the current paper.

3The full cokernel group gives the full “Picard group” Pic(G) = Div(G)/Prin(G), which is isomorphic to Z⊕Jac(G)

CHIP-FIRING GAMES, G-PARKING FUNCTIONS, AND THE MATRIX-TREE THEOREM 5

(ii) There is a close relationship between q-reduced divisors and q-critical configurations (or
sandpile predictions); see Remark 3.14 for more detail.

(iii) It follows from Proposition 2.5 that the Jacobian of G induces a group structure on the set
of q-reduced divisor, or on the set of q-critical configurations (see §A.2 for more about this
observation). However, the group law on these sets will be somehow “artificial”.

2.5. Generalized inverses. A matrix can have an inverse only if it is square and its columns (or
rows) are linearly independent. But one can still get “partial inverse” of any matrix.

Definition. Let A be a matrix (not necessarily square). Any matrix L satisfying ALA = A is
called a generalized inverse of A.

It is somehow surprising that for every matrix A there exists at least one generalized inverse. In
fact, more is true; any matrix has a unique Moore-Penrose pseudoinverse4.

Let Q be the Laplacian matrix of a connected graph. Since it has rank n − 1 it cannot have an
inverse. But there are many ways to obtain generalized inverses. Two examples are given below:

Example 2.7. Fix an integer 1 ≤ i ≤ n. Let Qi be the (n − 1) × (n − 1) matrix obtained from Q
by deleting ith row and ith column5. Then Qi is a full rank matrix and has an inverse Q−1

i . Let L(i)

be the n × n matrix obtained from Q−1
i by inserting a zero row after (i − 1)th row and inserting a

zero column after (i − 1)th column. Then L(i) is a generalized inverse of Q. One can check

QL(i) = I + R(i)

where I is the identity matrix, and R(i) has −1 entries in ith row and is zero everywhere else. As
R(i)Q = 0, we get QL(i)Q = Q.

Example 2.8. Let J be the n × n all one matrix. Then Q + 1
n
J is nonsingular and Q+ =

(Q+ 1
n
J)−1− 1

n
J is a generalized inverse of Q. In fact it is the unique Moore-Penrose pseudoinverse

of Q. It is easy to check QQ+ = Q+Q = I − 1
n
J .

3. Algorithm for computing reduced divisors

3.1. Dhar’s algorithm: the decision problem. Given a divisor on the graph G, definition
suggests that the verifier needs to check whether there exists a vertex v ∈ A such that D(v) <
outdegA(v) for all subsets A ⊆ V (G)\{q}. But, in fact, there is an elegant algorithm to do this
quickly, which is called the Dhar’s algorithm (after Dhar [20]). Both the algorithm and its proof of
correctness are given here.

Algorithm. (Dhar’s algorithm)
Input: A divisor D ∈ Div(G), and a vertex q ∈ V (G).
Output: TRUE if D is q-reduced, and FALSE if D is not q-reduced.
Let A0 = V (G) and v0 = q.

(0) Check D(v) ≥ 0 for all v ∈ V (G)\{q}.
(1) For 1 ≤ i ≤ n− 1, let Ai = Ai−1 r {vi−1}. Find a vi ∈ Ai with D(vi) < outdegAi

(vi) - If no
such vi exists, output FALSE and stop.

(2) Output TRUE.

4Moore-Penrose pseudoinverse of A is a generalized inverse of A with three extra properties; see [6] for an extensive
study of the subject.

5Qi is called a reduced laplacian of the graph.

6 FARBOD SHOKRIEH

Analysis of the Dhar’s algorithm. If the algorithm outputs FALSE, D cannot be q-reduced by
definition. Now assume the algorithm outputs TRUE. We need to show that for an arbitrary
subset A ⊆ V (G)\{q}, there exists a vertex v ∈ A such that D(v) < outdegA(v). Let vk be the
minimal element of A, with respect to the ordering induced by the algorithm. Then A ⊆ Ak and
therefore outdegAk

(vk) ≤ outdegA(vk). But we know D(vk) < outdegAk
(vk) by construction. Hence

D(vk) < outdegA(vk) and vk is the desired element in A.
The Dhar’s algorithm clearly runs in time O(n2) . �

3.2. The main algorithm: the search problem. Fix a base vertex q ∈ V (G). Here is the
problem we want to solve.

Given a divisor D ∈ Div(G), we want to find the unique q-reduced divisor D′ ∼ D.

A basic idea is to try to make the Dhar’s algorithm to output TRUE; anytime it is about to
output FALSE, “modify” the divisor to avoid it. However, there is a major problem with this naive
idea; this process can take exponential time in the size of input. Of course, one also needs to figure
out how to “modify” the divisor when the Dhar’s algorithm is about to fail.

For us, the multigraph can be described by the number of vertices n and edges m in the graph.
A divisor D can be presented by roughly

∑

v∈V (G) log(D(v)) bits, which is easily seen to be less

than n · log(deg(D)) bits.

Remark 3.1. In fact, it is not too hard to find an algorithm that finds the q-reduced divisors in time
that runs in polynomial in n, m, and deg(D) using the existing techniques appeared in [13, 33, 25].
But this is exponential in the “size of input”! Our algorithm will have a running time polynomial
in m and n, and there will be some log(deg(D))-bit computations involved.

We will now give an algorithm for finding the reduced divisor and prove its correctness in §3.3. In
§3.4 we give a deterministic upper bounds for its running time which show the algorithm is indeed
efficient.

Notation. ⌊·⌋ denotes the floor function. For a vector X, we denote by ⌊X⌋ a vector whose
entries are the floor of entries of X. Recall from §2.1 that χA ∈ M(G) denotes the {0, 1}-valued
characteristic function of A ⊆ V (G). To simplify the presentation, we pick an ordering of vertices,
and use [·] for column vector presentation of divisors and functions.

Algorithm. (Finding the reduced divisor)
Input: The Laplacian matrix Q of graph G. A divisor D ∈ Div(G), and a vertex q ∈ V (G).
Output: The unique q-reduced divisor D′ ∼ D.

Step 1. Find the generalized inverse L = L(q) of Q, as in Example 2.7. Compute the divisor
[D′] = [D] − Q⌊L(q)[D]⌋.

Step 2. Find a vertex v 6= q with D′(v) < 0 and substitute [D′] with [D′] + Q[χ{v}] (i.e. have v
borrow one dollar from each of its neighbors). Repeat Step 2 until no such “negative” vertex
v 6= q exists anymore.

Step 3. Now let A0 = V (G) and v0 = q.
(1) Set i = 1.
(2) While i ≤ n − 1, let Ai = Ai−1 r {vi−1}.

∗ If there exists a vi ∈ Ai such that D′(vi) < outdegAi
(vi): increase i by 1 and go

back to (2)
∗ Else, compute

k = min
vi∈Ai

outdegAi
(vi)6=0

⌊D′(vi)/outdegAi
(vi)⌋

CHIP-FIRING GAMES, G-PARKING FUNCTIONS, AND THE MATRIX-TREE THEOREM 7

and replace [D′] with [D′] − Q[k · χAi
] (i.e. have all vertices in Ai fire enough

times to get D′(vi) < outdegAi
(vi) for at least one vertex in Ai). Then go back

to (1).

3.3. Correctness of the algorithm. Here is the high-level idea of the the steps in the algorithm

• The task of Step 1 is to bound the values of the divisor on vertices v 6= q. Bounding these
values is important for bounding the running time of Step 2 and Step 3.

• The task of Step 2 is to make the values of the divisor on v 6= q non-negative while still
keeping the values bounded.

• The task of Step 3 is to “force” the divisor to pass the Dhar’s algorithm.

Assume for the moment that the algorithm actually terminates and produces an output. It is
easy to see that the output would be equivalent to D. Also, the output would certainly pass the
Dhar’s algorithm and therefore is q-reduced. Therefore, for the correctness of the algorithm, we
only need to show that it always terminates and produces an output.

Step 1. The following proposition clarifies the task of Step 1.

Proposition 3.2. If [D′] = [D] − Q⌊L(q)[D]⌋, then |D′(v)| < deg(v) for all v 6= q. D′(q) is such

that deg(D′) = deg(D).

Proof. Recall from Example 2.7 that QL(q) = I + R(q), where I is the identity matrix and R(q) has

−1 entries in qth row and is zero everywhere else. Therefore [D] = QL(q)[D] + deg(D) · eq, where
eq is the column vector which is zero everywhere except at position q, which is 1. Now

[D′] = [D] − Q⌊L(q)[D]⌋
= Q(L(q)[D] − ⌊L(q)[D]⌋) + deg(D) · eq

= Qf + deg(D) · eq

where f = L(q)[D] − ⌊L(q)[D]⌋ is a vector with entries from the interval [0, 1). It is now easy to
show that the absolute values of the entries of Qf are bounded by the degree of the corresponding
vertices. The second statement is trivial. �

Step 2. Perhaps it is not even clear that Step 2 will ever terminate, let alone in a polynomially
bounded number of iterations. The following Proposition justifies this fact.

Proposition 3.3. Given a divisor and a fixed vertex q, there exists a sequence of borrowing by
vertices in debt (i.e. having negative numbers) which takes all vertices v 6= q out of debt (i.e. there
exists a sequence of vertices such that Step 2 of the algorithm terminates).

Moreover, any sequence of borrowing by vertices with in debt terminates in the same number of
steps, with the same terminal configuration.

Proof. This is follows from the proof of Lemma 5.3 and discussion in page 24 of [5].
�

Remark 3.4. Step 2 has very nice features; by Proposition 3.2, |D′(v)| < deg(v) for all v 6= q. So
for any v 6= q with D′(v) < 0 only one borrowing is needed to make the vertex positive. Moreover,
the resulting positive number will clearly be less than the vertex degree again. This fact, together
with Proposition 3.2 guarantees that the output of Step 2 satisfies 0 ≤ D′(v) < deg(v) for all v 6= q.

Step 3. In Step 3, the algorithm forces the divisor to pass the Dhar’s algorithm. If for a subset
Ai no vi ∈ Ai with D′(vi) < outdegAi

(vi) exists (i.e. a counter-example for being q-reduced is

8 FARBOD SHOKRIEH

found), the algorithm computes

(3.5) k = min
vi∈Ai

outdegAi
(vi)6=0

⌊D′(vi)/outdegAi
(vi)⌋ .

Since
k ≤ D′(vi)/outdegAi

(vi)

or
0 ≤ D′(vi) − k · outdegAi

(vi)

for all vi ∈ Ai with outdegAi
(vi) 6= 0, replacing [D′] with [D′]−Q[k · χAi

] will not make any vertex
negative. Let w ∈ Ai be the vertex that achieves the equality (3.5). Then

D′(w)/outdegAi
(w) − 1 < k

or
D′(w) − k · outdegAi

(w) < outdegAi
(w) .

This means that replacing [D′] with [D′]−Q[k ·χAi
] will result in D′(w) < outdegAi

(w). Algorithm
then restarts the Dhar algorithm.

It is easy to see Step 3 eventually terminates; as vertex q never “fires”, it should eventually stop
receiving from its neighbors at some point. This, in turn, means that its neighbors will stop firing
at some point and therefore, eventually, will stop receiving from their neighbors. Iterating this
argument shows that the whole process will stop at a finite number of steps.

3.4. Bounds on the total number of chip-firing moves. It seems to be a hard problem to find
a good estimate of the running time of the algorithm, as it depends on the structure of the graph
and the given divisor in a rather complicated way. In practice, the algorithm seems to run much
faster than what is predicted by the upper bound given in this section. One reason for this is that
the technique is rather blind to the algorithm itself. This point will be clear shortly.

The following lemma is a generalization of the standard Cauchy-Schwarz inequality which can be
proved similarly.

Lemma 3.6. For any positive semidefinite matrix A with largest eigenvalue η, and for all vectors
x and y,

|xT Ay| ≤ η‖x‖2‖y‖2

Let A = Lq as in Example 2.7. Non-zero eigenvalues of Lq are the reciprocal of eigenvalues of
the reduced Laplacian matrix Qq. So L(q) is positive semidefinite and its the largest eigenvalue is
1/λ2, where λ2 is the smallest eigenvalue of Qq.

Let y = Qx. Multiplying both sides by Lq, we get Lqy = (I + RT
(q))x, or

(3.7) Lqy = x− x(q)1

where 1 denotes the all-one vector. Then 1T Lqy =
∑

i x(i) − n · x(q). Now using Lemma 3.6

|
∑

i

x(i) − n · x(q)| ≤ 1

λ2
‖1‖2‖y‖2 =

√
n

λ2
‖y‖2

In particular, if x(q) = 0 we have

(3.8) |
∑

i

x(i)| ≤
√

n

λ2
‖y‖2

In fact something stronger is true.

CHIP-FIRING GAMES, G-PARKING FUNCTIONS, AND THE MATRIX-TREE THEOREM 9

Proposition 3.9. Let y = Qx where Q is the Laplacian matrix of the graph G. If x(q) = 0 then

|
∑

i

x(i)| ≤
√

n

λ2
‖y‖′2

where ‖y‖′2 =
√

∑

i6=q y(i)2 (i.e. one can assume y(q) = 0 when computing ‖y‖2 in inequality

(3.8)).

Proof. This follows from the above discussion, together with the following observation; in (3.7),
since the qth column of L(q) is zero, one can freely change the value of y(q). Choosing y(q) = 0 we
are done.

�

If D1 ∼ D2 via a sequence of moves that q never participates, then there exists a vector x
with x(q) = 0, such that [D1] − [D2] = Qx. Moreover, if all moves are borrowing or all moves
are firings, then all x(i)’s all the same sign, and |∑i x(i)| precisely counts the number of vertex
moves. By Proposition 3.9 an upper bound on the number of vertex moves is given by |∑i x(i)| ≤√

n
λ2

‖[D1] − [D2]‖′2. Since ‖ · ‖2 ≤ ‖ · ‖1 for (finite-dimensional) vectors we have the following.

Proposition 3.10. Assume D2 is obtained from D1 with a sequence of moves so that

• q never makes a move.
• all moves are of the same type; vertices only fire or only borrow throughout the process.

Then an upper bound on the number of vertex moves is given by
√

n

λ2
(‖[D1]‖′1 + ‖[D2]‖′1)

where ‖y‖′1 =
∑

i6=q |y(i)|.

Corollary 3.11. Each of Step 2 and Step 3 in the algorithm terminates in at most 4
√

nm
λ2

vertex
moves.

Proof. The input and output of Step 2 satisfy |D′(v)| < deg(v) (for v 6= q) by Proposition 3.2 and
Remark 3.4. Therefore ‖ · ‖′1 of both input and output is less than

∑

v 6=q |deg(v)| < 2m. Since
vertices only borrow in Step 2 and q never makes a move, Proposition 3.10 applies. Step 3 follows
similarly because the input and output of Step 3 satisfy |D′(v)| < deg(v) (for v 6= q) by Remark 3.4
and definition of q-reduced divisor. Vertices only fire in Step 3 and q never makes a move. �

Remark 3.12. (i) Step 3 in the algorithm performs many moves at the same time (e.g., set
firings can be considered as combination vertex firings). So the actual number of iterations
in Step 3 is, in practice, a fraction of what is given in Corollary 3.11. Similarly, it is possible
to modify Step 2 to have combination moves. We omit the details here.

(ii) In Step 1, computing the generalized inverse L(q) is the expensive part, which takes time
O(nω), where ω ≤ 3 is the exponent for matrix multiplication. But we only need to compute
it once and save it. The rest of Step 1 takes O(n2) operations.

Remark 3.13. It is possible to give bound on the running time that involve the diameter or the
maximum effective resistance instead of algebraic connectivity, using the techniques appeared in
[33, 25]. We omit this discussion here.

10 FARBOD SHOKRIEH

3.5. Efficient bijective proof of the matrix-tree theorem. By Lemma 2.3 the order of Jac(G)
is equal to the value of the determinant of the reduced Laplacian of G. In order to have a bijective
proof of the matrix-tree theorem, one needs to find an explicit bijection between the elements of
the group Jac(G) and the spanning trees of G. It is rather clear that such a bijection cannot be
fully canonical, as that would imply a particular spanning tree is distinguished and corresponds to
the identity! Therefore, one needs to make some choices to write down a bijection.

By definition Jac(G) = Div0(G)/Prin(G). So the Jacobian of G is the set of equivalence classes
of divisors of degree zero. We know by Proposition 2.5, once we fix a vertex q, there is a unique
representative in each class that is q-reduced.

Now, one can ask again whether there is a nice and explicit bijection between these q-reduced
divisors and spanning trees of G. It turns out to have such a bijection, one needs to make a few
more choices, for example choose an ordering on the edges of the graph. The problem of giving
explicit bijection between reduced divisors (G-parking functions) and spanning trees of graph is
studied extensively in the literature (see, e.g., [12, 18, 16, 7]). For our work, we use the bijection
given by Cori and Le Borgne in [18]. In fact, a variation of their bijection algorithm can be viewed
as the Dhar algorithm with some extra features. The running time of the algorithm is then roughly
the same as the running time of the Dhar’s algorithm. We omit further details in this paper.

Remark 3.14. Some of the bijections in the literature are given between the q-critical configurations
(or sandpile predictions) and spanning trees. For a fixed vertex q, q-critical configurations provide
another set of unique representatives for equivalence classes of divisors (see, e.g., [9, 10]). There is
a rather simple relationship between reduced and critical divisors; they add up to deg(v) − 1 for
any v 6= q, and their value on q is forced by the degree of the divisor (see [21, 11, 19, 31, 5]).

We have shown in §3.2 that this unique representative can be computed efficiently. Therefore we
have the following “constructive and efficient” version of Kirchhoff’s matrix-tree theorem.

Theorem 3.15. Size of the group Jac(G) is equal to the number of spanning trees of G. Therefore
the value of the determinant of the reduced Laplacian of G gives the number of spanning trees of G.
Moreover, there exists an efficiently computable bijection between elements of Jac(G) and spanning
trees of of G.

Appendix A. Some applications

A.1. Uniform spanning trees. First application of our results is to give a new, completely al-
gebraic method for picking uniform spanning trees of a given graph G. The running time of this
algorithm is bounded deterministically. Proving that the output of the algorithm is indeed (uni-
formly) random comes for free. The new algorithm is taking full advantage of the Jacobian of the
graph which, as we observed in §2.3, is a natural group attached to the set of spanning trees of the
graph.

Here is the algorithm for picking a (uniformly) random spanning tree. Proof of correctness is
trivial.

Algorithm. (Picking a uniform spanning tree)
Input: A graph G.
Output: A uniform spanning tree of G.

(1) Fix an arbitrary vertex q ∈ V (G), and an arbitrary ordering on E(G).
(2) Compute the invariant factors {n1, . . . , ns} and the corresponding generators {g1, . . . ,gs}

for Jac(G) using a Smith normal form algorithm on Q (gi’s are presented by divisors of
degree zero).

CHIP-FIRING GAMES, G-PARKING FUNCTIONS, AND THE MATRIX-TREE THEOREM 11

(3) For 1 ≤ i ≤ s, pick a random integer 0 ≤ ai ≤ ni−1, and compute the divisor D =
∑s

i=1 aigs.
(4) Use Algorithm 3.2 to find the unique q-reduced divisor in the equivalence class of D.
(5) Use the Cori and Le Borgne algorithm in [18] (or its variation) to find the corresponding

spanning tree.

To our knowledge, the fastest Smith normal form algorithm given to date is given in [26], which

runs in (n2.697263 log ‖Q‖)1+o(1), where ‖Q‖, for our application, means the maximal degree of a
vertex. Note that for repeated sampling, one can perform steps (1) and (2) only once, and save

invariant factors and generators. Step (3) takes O(
√

nm
λ2

) chip-firing moves. Step 5 can be done in

less than O(n2).
With this algorithm, unlike previous methods, it is very easy to sample multiple spanning trees

with certain joint distribution. For example, very few random bits are required to generate the
pairwise spanning trees. We omit the details here.

The bound on the running time of our algorithm does not beat the current best known running
time O(nω) of [17]. For repeated generation of spanning trees, it is not clear how our running
time O(

√
nm/λ2) compares with O(nω). We are optimistic that there is room for improvement in

Algorithm 3.2 and/or its running time analysis. Once again we emphasize that the techniques used
for bounding the running time of Algorithm 3.2 is blind to the algorithm itself, and in practice the
algorithm seems to run much faster than what is predicted by the upper bound.

A.2. The group law on reduced divisors or critical configurations. Fix a vertex q. Jac(G)
induces a group structure on the set of q-reduced divisors (G-parking functions) or q-critical divisors
(or sandpile predictions) of G. The latter is called critical group (or sandpile group) of G. The
group law requires to first add the two given divisors as elements of Div(G), and then find the
unique q-reduced or q-critical divisor equivalent to the addition result. Clearly our algorithm can
be used to perform the group law. A different approach for performing the group operation is given
in [34]. Our algorithm seem to be faster, and our proof is significantly simpler and more algebraic.

A.3. Algorithm for the chip-firing game of Baker and Norine. The following Proposition
is implicit in the proof of Theorem 3.3 in [5]. Proof of part (a) is, of course, trivial.

Proposition A.1. Assume the chip-firing game of Baker and Norine starts with a configuration
D ∈ Div(G), and let D′ ∼ D be the corresponding q-reduced divisor.

(a) If D′(q) ≥ 0 then there exists a wining strategy, and D′ is a wining configuration.
(b) If D′(q) < 0 then no winning strategy exists.

As a corollary, if one computes the q-reduced divisor associated to a given configuration, then
one can efficiently decide whether there exists a wining strategy or not. Moreover, it is a simple
linear algebra exercise to find the moves for the winning strategy, once the initial configuration and
the wining configuration is known.

A.4. Checking whether r(D) ≥ 0. Baker and Norine prove a Riemann-Roch theorem for finite
graphs in [5]. To any divisor D ∈ Div(G) they associate an integer, called rank, r(D) ≥ −1. We
refer to their paper for details. The following lemma follows from the proof of Theorem 3.3 in [5].

Lemma A.2. r(D) ≥ 0 if and only if the unique q-reduced divisor equivalent to D has non-negative
number on q.

In fact, we can use this lemma and our algorithm to check whether r(D) ≥ c for any “constant” c.
Question of finding reduced divisors was first posed by Henrik Lenstra to Baker and Norine through
personal communication. This connection with Riemann-Roch theory was the original motivation
of the author to work on this problem.

12 FARBOD SHOKRIEH

References

[1] D. J. Aldous. The random walk construction of uniform spanning trees and uniform labelled trees. SIAM J.
Discrete Math., 3(4):450–465, 1990.

[2] L. Babai. Lecture notes on sandpile model. REU 2005, Discrete Mathematics, 2005. Notes available at
http://people.cs.uchicago.edu/ laci/REU05/notes/Jul11/10.pdf.

[3] R. Bacher, P. de la Harpe, and T. Nagnibeda. The lattice of integral flows and the lattice of integral cuts on a
finite graph. Bull. Soc. Math. France, 125(2):167–198, 1997.

[4] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Phys. Rev. A (3), 38(1):364–374, 1988.
[5] M. Baker and S. Norine. Riemann-Roch and Abel-Jacobi theory on a finite graph. Adv. Math., 215(2):766–788,

2007.
[6] A. Ben-Israel and T. N. E. Greville. Generalized inverses. CMS Books in Mathematics/Ouvrages de

Mathématiques de la SMC, 15. Springer-Verlag, New York, second edition, 2003. Theory and applications.
[7] B. A. Benson and P. Tetali. Parking functions and acyclic orientations of graphs. 2008. Preprint available at

arXiv:0801.1114.
[8] N. Biggs. Algebraic graph theory. Cambridge Mathematical Library. Cambridge University Press, Cambridge,

second edition, 1993.
[9] N. Biggs. Algebraic potential theory on graphs. Bull. London Math. Soc., 29(6):641–682, 1997.

[10] N. Biggs. Chip-firing and the critical group of a graph. J. Algebraic Combin., 9(1):25–45, 1999.
[11] N. Biggs. The Tutte polynomial as a growth function. J. Algebraic Combin., 10(2):115–133, 1999.
[12] N. Biggs and P. Winkler. Chip-firing and the chromatic polynomial. Report LSE-CDAM-97-03, Centre for Discrete

and Applicable Mathematics, London School of Economics, London, U.K., February 1997.
[13] A. Björner, L. Lovász, and P. W. Shor. Chip-firing games on graphs. European J. Combin., 12(4):283–291, 1991.
[14] B. Bollobás. Modern graph theory, volume 184 of Graduate Texts in Mathematics. Springer-Verlag, New York,

1998.
[15] A. Broder. Generating random spanning trees. pages 442–447, Oct-1 Nov 1989.
[16] D. Chebikin and P. Pylyavskyy. A family of bijections between G-parking functions and spanning trees. J.

Combin. Theory Ser. A, 110(1):31–41, 2005.
[17] C. J. Colbourn, W. J. Myrvold, and E. Neufeld. Two algorithms for unranking arborescences. J. Algorithms,

20(2):268–281, 1996.
[18] R. Cori and Y. Le Borgne. The sand-pile model and Tutte polynomials. Adv. in Appl. Math., 30(1-2):44–52,

2003. Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001).
[19] R. Cori, D. Rossin, and B. Salvy. Polynomial ideals for sandpiles and their Gröbner bases. Theoret. Comput. Sci.,

276(1-2):1–15, 2002.
[20] D. Dhar. Self-organized critical state of sandpile automaton models. Phys. Rev. Lett., 64(14):1613–1616, Apr

1990.
[21] A. Gabrielov. Abelian avalanches and Tutte polynomials. Phys. A, 195(1-2):253–274, 1993.
[22] J. D. Gilbey and L. H. Kalikow. Parking functions, valet functions and priority queues. Discrete Math.,

197/198:351–373, 1999. 16th British Combinatorial Conference (London, 1997).
[23] A. Guénoche. Random spanning tree. J. Algorithms, 4(3):214–220, 1983.
[24] M. D. Haiman. Conjectures on the quotient ring by diagonal invariants. J. Algebraic Combin., 3(1):17–76, 1994.
[25] A. E. Holroyd, L. Levine, K. Mészáros, Y. Peres, J. Propp, and D. B. Wilson. Chip-firing and rotor-routing on

directed graphs. In In and out of equilibrium. 2, volume 60 of Progr. Probab., pages 331–364. Birkhäuser, Basel,
2008.

[26] E. Kaltofen and G. Villard. On the complexity of computing determinants. Comput. Complexity, 13(3-4):91–130,
2004.

[27] G. Kirchhoff. Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung
galvanischer Ströme geführt wird. Ann. Phys. Chem., (72):497–508, 1847.

[28] A. G. Konheim and B. Weiss. An occupancy discipline and applications. SIAM Journal on Applied Mathematics,
14(6):1266–1274, 1966.

[29] V. G. Kulkarni. Generating random combinatorial objects. J. Algorithms, 11(2):185–207, 1990.
[30] D. Lorenzini. Arithmetical graphs. Math. Ann., 285(3):481–501, 1989.
[31] A. Postnikov and B. Shapiro. Trees, parking functions, syzygies, and deformations of monomial ideals. Trans.

Amer. Math. Soc., 356(8):3109–3142 (electronic), 2004.
[32] R. P. Stanley. Parking functions and noncrossing partitions. Electron. J. Combin., 4(2):Research Paper 20, approx.

14 pp. (electronic), 1997. The Wilf Festschrift (Philadelphia, PA, 1996).

CHIP-FIRING GAMES, G-PARKING FUNCTIONS, AND THE MATRIX-TREE THEOREM 13

[33] G. Tardos. Polynomial bound for a chip firing game on graphs. SIAM J. Discrete Math., 1(3):397–398, 1988.
[34] J. van den Heuvel. Algorithmic aspects of a chip-firing game. Combin. Probab. Comput., 10(6):505–529, 2001.
[35] D. B. Wilson. Generating random spanning trees more quickly than the cover time. In Proceedings of the Twenty-

eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pages 296–303, New York,
1996. ACM.

Georgia Institute of Technology, Atlanta, Georgia 30332-0160, USA

E-mail address: shokrieh@math.gatech.edu - farbod@ece.gatech.edu

	1. Introduction
	1.1. Overview
	1.2. Some related work

	2. Definitions and background
	2.1. Notation and Terminology
	2.2. Chip-firing games on graphs
	2.3. The Jacobian of a finite graph
	2.4. Reduced divisors or G-parking functions
	2.5. Generalized inverses

	3. Algorithm for computing reduced divisors
	3.1. Dhar's algorithm: the decision problem
	3.2. The main algorithm: the search problem
	3.3. Correctness of the algorithm
	3.4. Bounds on the total number of chip-firing moves
	3.5. Efficient bijective proof of the matrix-tree theorem

	Appendix A. Some applications
	A.1. Uniform spanning trees
	A.2. The group law on reduced divisors or critical configurations
	A.3. Algorithm for the chip-firing game of Baker and Norine
	A.4. Checking whether r(D) 0

	References

