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In this article we provide a combinatorial description of an arbitrary minor of the 
Laplacian matrix (L) of a mixed graph (a graph with some oriented and some unorient- 
ed edges). This is a generalized Matrix Tree Theorem. We also characterize the non- 
singular substructures of a mixed graph. The sign attached to a nonsingular substructure 
is described in terms of labeling and the number of unoriented edges included in certain 
paths. Nonsingular substructures may be viewed as generalized matchings, because in 
the case of disjoint vertex sets corresponding to the rows and columns of a minor of L, 
our generalized Matrix Tree Theorem provides a signed count over matchings between 
those vertex sets. A mixed graph is called quasi-bipartite if it does not contain a non- 
singular cycle (a cycle containing an odd number of unoriented edges). We give several 
characterizations of quasi-bipartite graphs. 
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300 R. B. BAPAT et al. 

1. INTRODUCTION 

The classical Matrix Tree Theorem in its simplest form [2, p. 219 and 
4, p. 651 gives a combinatorial characterization of the adjoint of the 
Laplacian matrix of an oriented graph, in terms of spanning trees of 
the underlying graph. Since the adjoint of a matrix is just a special case 
of the compound of a matrix (the matrix consisting of fixed size minors 
of the matrix), and the Laplacian matrix of an oriented graph is a 
special case of the Laplacian matrix of a mixed graph (a graph with 
some oriented and some unoriented edges), it is reasonable to expect a 
much more general theorem, which could provide additional insight 
into a formula that otherwise may seem somewhat mysterious. An 
earlier paper [5] gives a combinatorial characterization of the trace of 
the compound of the Laplacian in an unoriented graph. To complete 
the process of generalizing the Matrix Tree Theorem, we show in this 
paper how to interpret each entry in the compound as a signed count 
of certain spanning-tree-like structures (called generalized matchings) 
in the mixed graph. The complete classical theorem now follows as a 
corollary, and we are also able to view certain entries as giving a signed 
count of matchings between disjoint subsets of the vertices in the 
graph. We discuss the edge version of the Laplacian of a mixed graph 
in [l]. For a general survey of results about the Laplacian, see [8]. 

Chaiken has discussed an All Minors Matrix Tree Theorem in [3]. 
His case for signed (undirected) graphs [3, p. 3261 comes closest to our 
description. His nonsingular substructures are essentially the same as 
ours, except that they are made "spanning" by adding trees consisting 
of single vertices. Our approach can easily be modified to get results 
about matrices with entries representing weights given to all edges of 
the mixed graph. However, keeping those technicalities away has made 
our exposition easier, using only basic linear algebraic techniques and 
simple graph theoretic connections. Our method of determining the sign 
of each summand in a counting expression brings out more structural 
information about the nonsingular substructures. 

After giving some preliminaries in the second section, we character- 
ize nonsingular substructures required to describe off-diagonal minors 
of the Laplacian in the third section. In the fourth section, we provide 
the description of the sign attached with the nonsingular substructure. 
The last section focuses on characterizing quasi-bipartite graphs. It is 
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GENERAL!ZED M.L?T!?!X TREE THFORFM 301 

clear that the incidence matrices of quasi-bipartite graphs are totally 
unimodular, and as such, can play an interesting role in applications to 
linear programming [6]. 

2. PRELIMINARIES 

Let G = (V ,  E )  be a mixed graph with u = v(G) vertices V = V(G) = 

{ v , ,  v2,. . . , v,} and E = E(G) edges E = E(G)  = {e l ,e l , .  . . .e,}. Parallel 
edges and loops are permitted. In this paper we allow some of the 
edges to receive an orientation. thereby including both the classical 
approach of orienting all edges [2] and the unoriented approach [5]  as 
extreme cases. Thus, in our graph G some of the edges have a specified 
head and tail, while others do not. It is important to stress, however, 
that our mixed graphs are considered undirected graphs in terms of 
defining paths. cycles. spanning trees. connectedness, etc. It turns out 
that oricnted loops play no useful role in this theory, so we will assume 
that G has none of them. 

The incidence matrix of G is the v x E matrix h1 = M(G) = [mV] 
whose entries are given by mi, = 1 if e, is an unoriented link (i.e., 
nonloop) incident to v, or if e, is an oriented edge with head vi, 
m, = - 1 if e j  is an oriented edge with tail v ,  mii = 2 if e, is a loop 
(necessarily unoriented) at vi, and m ,  = 0 otherwise. Thus, every col- 
umn of MM contains either exacriy two Is, or exaciiy o ~ i e  2, oi- exactly 
one 1 and one - 1. with the other entries all 0. The mixed Lupluciun 
matrix of G is defined as L = L(G) = MM' = [l!,], where M' denotes 
the transpose of M .  It is easy to see that the diagonal entries of L give 
the degrees of the vertices with, however, each loop contributing 4 to 
the count, and the off-diagonal entry I,, gives the number of unoriented 
edges joining v i  and v, minus the number of oriented edges joining 
them (in either direction). For a matrix M, given subsets S and T of the 
sets of rows and columns respectively, M [ S ,  TI denotes the submatrix 
of M consisting of rows from S and columns from T. 

We need to consider the subsrructures of G in which we may have 
deleted some edges or some vertices, or possibly both. We allow the 
possibility of deleting vertices without deleting the edges incident to 
them, although we will assume that each undeleted edge is incident to 
at least one undeleted vertex. Notions of connectivity and component 
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3n2 R R RAPAT er 01. 

are applied to substructures in the usual way; in particular, paths consist 
of alternating sequences of vertices and incident edges (with orientation 
ignored). Each substructure R of G gives rise to a submatrix M(R) of 
M(G) in the obvious way. using the v(R) rows corresponding to V(R) 
(the vertices in R), and the E(R) columns corresponding to E(R) (the 
edges in R). We call the substructure R nonsir~gular if M(R) is square and 
has nonzero determinant; otherwise, we call R singular. For example, if 
we take a spanning tree of a connected graph on v vertices and delete one 
vertex (but not the edges incident to that vertex), then the resulting 
structure, which we call a rootless spanning tree, has u- 1 vertices and 
u - 1 edges. It is easy to see by looking at the submatrix that this is a 
nonsingular substructure of the original connected graph, and indeed, 
the determinant of the submatrix is *I .  Note that a rootless spanning 
tree will be nonconnected if the deleted vertex had degree greater than 1 
in the tree. The following result describes the corresponding situation 
for a cycle in a mixed graph. 

LEMMA 1 Let G be a m k e d  g r ~ p h  .~i.htch k G ~j'cli. on v vertices. Then 
the cycle is nonsingular if and only i f  it contains an odd number of 
unoriented edges. Furthermore, in that case, det(M(G)) = h2. 

Prooj' If the cycle is a loop then the loop must be unoriented and 
hence has exactly one unoriented edge. Also, in this case, M is a 1 x 1 
matrix with 2 as the entry and so its determinant is 2. So we assume 
that v 2 2. We may assume, after a reiabeiing of the vertices if neces- 
sary, that the nonzero entries of M(G) occur precisely at positions 
(i,i), ( i t  l,i), for i =  1 , 2  , . . . ,  v -  I ,  and (1,u) and (v,u), and that 
the ( I ,  1)th entry is 1 .  Then expanding along the top row, we see that 

if the the determinant of M is, up to sign. given by 1 + (- I)*+"+' ' 

(1, u)th entry is 1, and 1 + (- I)"+" if the (1, v)th entry is - 1, where p 
is the number of -1s in all rows of M other than the first one. Thus, 
M is nonsingular if and only if the sum of the number of vertices in 
G and the number of oriented edges in G is odd. i.e., if and only if the 
number of unoriented edges in G is odd. It clearly follows from the 
discussion that det(M(G)) = &2 in this case. 

A connected mixed graph containing exactly one cycle, with that 
cycle being nonsingular, is called a nonsingular unicyclic graph. Thus, a 
nonsingular unicyclic graph consists of a nonsingular cycle (possibly a 
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GENERALIZED MATRIX TREE THEOREM 103 

loop) together with (possibly trivial) trees growing out of each vertex 
In the cycle. A mixed graph G will be called quasi-bipartite if it does 
not contain a nonsingular cycle. Thus. a mixed graph with all edges 
unoriented is quasi-bipartite i f  and only if it is bipartite; and a mixed 
graph with all edges oriented is always quasi-bipartite. 

Given a mixed graph G, we let w = w(G)  and i jo = wo(G) denote the 
number of components and the number of quasi-bipartite components 
of G, respectively. We set w, = w,(G) = w - wo. We can now prove the 
basic structure lemma. 

LEMMA 2 Lec R be u substructure of cr mixed gruph with v(R) = E(R). 
Then un1e.w every component of R has an equal number qf vertices and 
edges, det (M(R))  = 0. If'every component o J R  has an equal number of' 
vertices and edges, then ever.); cwnponmt o f  R is il unicj~lic graph or u 
rootless tree. Zf any one of che components is a singulur unicyclic graph, 
then det (M(R))  = 0; otherwise, &t (M(R) )  = f 2 " 1 ( ~ ) .  

Proof' The first claim follows from the i-aplace expansion of the 
dererminant 17. p. i4]. Thus. suppose that every component of R has an 
equal number of vertices and edges. Then by a permutation of the 
rows and columns we can put M ( R )  in block diagonal form with 
square blocks, corresponding to the components of R. We claim that 
each component of R either is a rootless tree or consists of a cycle with 
ipossibiy iriviaij ru"ie(j tiees gi-"wiiig oili of the ver:iccs uf :he 

!ndeed~ if such a component has a vertex incident to exactlv one edge 
in K, then we can remove the vertex and this edge and proceed induc- 
tively; otherwise every vertex must have degree exactly 2, and henct: R 
is a cycic. Ti~c  Jc i c~~ l i i~ ia~ i i  vf X j E j  czii b~ cvl;lul;:cc! by :a!cicg :he 
product of the determinants of the diagonal blocks. If a component is 
a rootless tree then the determinant of the corresponding block is & I .  
If a component is unicyclic, then by Lemma 1, the determinant of the 
corresponding block is 0 or f 2 according as whether the cycle in the 
component is singular or not. Hence, the result is proved. H 

We call a subgraph S of a connected mixed graph G an essential 
spuming subgruph of G if either G is q uasi-bipartite and S is a spanning 
tree of G, or else G is not quasi-bipartite, v ( S )  = v(G), and every 
component of S is a nonsingular unicyclic graph. Note in particular 
that an essential spanning subgraph of a connected mixed graph may 
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304 R.  B.  BAPAT er al. 

be nonconnected, but each of its components H satisfies v(H) = E(H).  
An essential spanning subgraph of a nonconnected mixed graph is 
defined to be the union of one essential spanning subgraph from each 
component. It is easy to see that an essential spanning subgraph of G 
must contain v - wo edges. 

Further, a k-reduced spanning substructure of a mixed graph G on v 
vertices is a substructure of G containing v - k vertices, each compo- 
nent of which contains an equal number of vertices and edges and has 
no singular cycles. It is easy to see that any k-reduced spanning sub- 
structure R of G has rootless trees and nonsingular unicyclic graphs as 
its components and satisfies v(R) = E(R) = v(G) - k. 

Every graph with at most k quasi-bipartite components has a k- 
reduced spanning substructure: simply take a spanning tree in k com- 
ponents (including all the quasi-bipartite ones) with one vertex deleted, 
together with a spanning nonsingular unicyclic subgraph in the remain- 
ing components. It is clear from the definitions that the do-reduced 
spanning substructures of a mixed graph G (with do quasi-bipartite 
components) are in one-to-one correspondence with the essential span- 
ning subgraphs of G with one vertex deleted from each quasi-bipartite 
component. 

Now we are in a position to see that the rank of M(G) is u(G) - 
wo(G). This immediately follows from observing that for a connected 
mixed graph G, the rank of M(G) is v(G) - ! if G is quasi-bipartite and 
u(G) otherwise. 

We also get the Principal Minor Version of the Matrix Tree Theo- 
rem for a mixed graph. 

THEOREM 1 Let G be a mixed graph, k a nonnegative integer not 
exceeding v(G), and VI a subset of V containing v - k vertices. Then 

hvhere the sum is taken over all k-reduced substructures R o f  G ~tlith 
V(R) = V1. 

Proof' Since L = MM',  by the Cauchy-Binet Theorem (see [7, p. 14]), 
we know that det(L[V,, V1]) is the sum of the squares of the 
determinants of the square submatrices MIVI,  E l ]  where El is a set of 
v - k edges of G. By Lemma 2, the only nonzero contributions to this 
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GENERALIZED MATRIX TREE THEOREM 305 

sum come from substructures R of G each component of which is a 
rootless tree or a nonsingular unicyclic graph, and the contribution is 
(f 212 = 4 for each nonsingular cycle in the substructure. That gives 
the right-hand side of the equation. H 

For the following corollary we need to recall that the rth compound 
of an m x n matrix A is the ( 7 )  x (:) matrix C,(A) whose (i,.j)th entry 
is the determinant of the matrix obtained from A by using the rows of 
the ith r-subset of the set of all rows of A ,  and the columns of the jth 
r-subset of the set of all columns of A.  

COROLLARY 1 Let G be a mixed graph. Then 

trace(C,,-, (L)) - C r(~)4""('). 
S 

where the sum is taken over all essential spanning subgruphs S of G ,  and 
r(S) is the product of'the numbers qf vertices in the quasi-bipartite (tree) 
components oj. S.  

COROLLARY 2 Let G be a mixedgraph with no quasi-bipartite compo- 
nent. Then 

where the sum is taken over all essential spanning subgraphs of G. 

3. OFF-DIAGONAL MINORS 

In this section, we provide a characterization of the nonsingular sub- 
structures needed to describe the off-diagonal minors of the Laplacian 
of the mixed graph G. 

In order to study the off-diagonal minors of the Laplacian of G ,  we 
need to relativize the notion of nonsingularity. If V C  V ( G )  and 
E c  E(G), then we denote the substructure of G consisting of the 
vertices in V and the edges in E by S(V, E) and we denote its incidence 
matrix by M[V,  El, using rows of M ( G )  corresponding to V and 
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306 R. B. BAPAT et al. 

columns corresponding to E. Recall that S ( V ,  E )  is nonsingular if 
1 VI = /El and det(M[V, El )  # 0; and this is the case if and only if every 
component of S ( V ,  E )  is either a rootless tree or a nonsingular uni- 
cyclic subgraph. 

Suppose that Vl  and V2 are two subsets of V(G),  each having 
cardinality r, where 1 < r < u, and suppose that E 2 E(G) with IEl = r. 
We define S(V1 U V2, E )  to be nonsingular relative to V 1  and V2 if 
S ( V I ,  E )  and S(V2, E )  are both nonsingular. This definition generalizes 
our earlier one, of course, if IVI n V21 = 14, since in that case nec- 
essarily Vl n V2 = V I  = V2. It is easy to see that if S(VI  n V2, E )  is 
nonsingular relative to Vl and V2, then each edge in E has to contain 
at least one vertex in V1 and at least one vertex in V2. Thus, an edge in 
E could have both endpoints in Vl n V2, one endpoint in Vl  n V2 and 
the other end dangling, one endpoint in V i  f~ V2 and the other end- 
point in just one of the two vertex sets, or one endpoint in Vi\V2 and 
the other in V2\ V 1 .  

The following theorem characterizes the nonsingular substructures 
of this kind. 

THEOREM 2 Let G be a mixed graph. Let V 1 ,  V2 '2 V ( G )  and E 
E(G) with ( V I  ( = ( V2( = (El. Then S(VI  U V2, E)  is nonsingular relative 
to V 1  and V2 if and only if each component is either a nonsingular 
substructure of S (V1  n V2, E )  or a tree with exactly one vertex in each of 
V,\ V2 and V2\ V 1 .  

The sufficiency of the condition is clear. The proof of necessity follows 
from the following two lemmas about the components of S ( V I  u Vz, E ) .  
1- th-c- n r n n f c  :?JP zge the ~ l b e r v a f i ~ n  that if 4 nnnsinplar m x m I" LL'WUW y."".", 

matrix has a zero submatrix of size r x s, then necessarily r + s 5 m. 

LEMMA 3 Let S (VI  U V2, E)  be nonsingular relative to V1  and V2. 
Suppose that K is a component of S(Vl  U V2, E)  and is also a component 
of S(V1, E )  or S(V2,  E ) .  Then K is a component of S(VI n V2, E ) .  

Proof Without loss of generality, let K be a component of S ( V 1 ,  E ) .  It 
follows from the nonsingularity of S ( V I ,  E) that IV(K)I = IE(K)I. Let 
K have p vertices in V l  n V2 and q vertices in V1\V2. Then 
p + q = I V ( K  )I = IE(K ) I .  The submatrix of the nonsingular matrix 
M(V2, E) formed by the rows corresponding to V2\V(K) and the 
columns corresponding to E(K)  is the zero matrix, and so by the 
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observation just preceding this lemma, 

IV?\V(K)I + IE(K)I < /V?I. 

Thus, 

and hence y = 0. Therefore, K is a component of S ( V I  n V2, E ) .  

L E M M A  4 Let S (V I  u VZ,  E )  hc tzonsingular relative to V1 and Vz. 
Supposc thur K is u c.orrzpownt 01' S ( V l  u Vz,  E )  hut is a cot~zponmt of' 

neither S ( V I ,  E )  nor S ( V 2 ,  E ) .  Then K is a trre c~ntaining exact1-v one 
w r t m  i;z PK!; ~ f '  V,!, L'? ~ m !  !I2!, !fi . 

Proof Suppose that K contains t ,  vertices in Vl \Vz and t2 vertices in 
V,\V,. By our hypothesis. > 1 and r z  > 1.  The submatrix of the 
nonsing~llar matrix M! Vi. E )  formed by the rows corresponding to  
7 7 

1 V(K j and columns corresponding to E(K j is the zero subiiiairii;, 
and hence 

The last inequality lhllows since K is connected. Thus, these inequali- 
ties are in fact equalities. Similarly 

Since / V(K )I - IE (K) /  = 1 ,  K is a tree and the proof is complete. 

4. GENERALIZED MATCHING AND SIGN 

In this section, we present the generalized Matrix Tree Theorem. We 
first determine the sign attached to each nonsingular substructure of 
the mixed graph defined in the previous section. 
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308 R. B. BAPAT c.1 a1 

Given subsets V I  and V7 of V ( G ) ,  each of cardinality r, a 
nonsingular substructure of G relative to V I  and V2 (as described in 
Section 3) may be called a genera1i:edmutching between V I  and V7. If 
I / ,  n 13 = Q). one can easily see that a nonsingular substructure of G 
relative to V I  and V2 is indeed a matching, and a combinatorial inter- 
pretation of the corresponding minor of L (G) amounts to the sum of 
+ 1 or - 1 associated with each of these matchings. In this section. 
we would like to describe this "sign" of a generalized matching using 
the labeling of vertices and structure of its components. 

For a generalized matching S = (VI  u V2,  F )  between V 1  and V2. let 
T I ,  T 2 , .  . . , Tp be its tree components and Q be the union of the re- 
maining components on V l n V 2 .  Let Al  denote M I V 1 ,  F ]  and A2 de- 
note M [ V 2 .  F]. Let Vl\,V2 = {u lo ,  u 2 ~ . .  . . . uP0}. where ulo < u2n < ..- 
< u p ~ ,  and uio is a vertex of Ti for i = 1.2, . . . ,p.  Let Vi\ I.', be given by 
{u l , , ,  U Z , ? ,  . . . , up,,) where ui,, is a vertex of Ti for i = 1,2 , .  . . , p ,  and 
t i  is the length of the unique path yi in Ti from uio to ui,, for 
i = 1,2,.  . . ,p .  Let Ui be an ordered list of vertices of' V l  n V2 on the 
path yi between uio and u; ,  for i = 1,2, .  . . ,p ,  and let E, bc an ordered 
list of edges on n for i = 1,2,. . . . p .  Let [ I  and E denote ordered lists 
of vertices and edges, respectively, of S outside 7 1  u "1 2 . . u u,,. 

It is clear that we can order the columns of A I  and A2 in the list 
E l ,  E2 , .  . . , Ep, E by using the identical permutation, without changing 
the value of det(Alj det(A2j. We can order the rows vf A ,  iii the iisi - 
ulo, 2420,. . . , upo, Cr l ,  LIZ,. . . , LC,, GI to get A ] .  and order the rows of A7 in 
the list ul , , ,  uz,,, . . . ,up,,, U I ,  U 2 , .  . . , U p ,  U to ,get $ 2 .  Observe that for 
i = 1,2,. . . ,p the row uio has to move past uio - i - cri rows, and the 
row ui,, has to move past ui,, - i - pi wws, w i ~ e ~ t :  ct.i = Jiuil/ i i i i ~ ) [  
and Pi = I{j(ujo < u;,,)I. Note that C ; = ,  ai + C;=, ,$ zp2 =p (mod 2). 
Therefore 

where r is an order-preserving bijection between {1,2. . . . , p )  and 
{ q , ,  , ~ 2 , ~ ~  . . . , up,,) and inv(r) is the number of inversions of T. If B 1  is 

obtained from 21 by pushing all rows of Ui just below the row uio for 
i = 1.2,. . . ,p, and B2 is obtained from 22 by pushing all rows of Ui 
just below the row uiIi for i = 1,2,. . . ,p, it is clear that the number of 
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inversions in both "pushing up" movements are identical. Due to the 
block diagonal structure of both B1 and B2, it is easy to calculate 

where d(-yl U -y2 U - . .U-y,,) denotes the number of oriented edges in 
yl U -y2U. . . U yp. From (4.1) and (4.2), we get 

It is clear that det(M[U, E ] ) ~  = 4d1(S) ,  where w l ( S )  is the number of 
nonsingular unicyclic components of S.  We can define the sign of S as 

where VI\V2 = {uiOll < i < p ) ,  V7\VI = {ulr,J1 5 i 5 p ) ,  7; is the uni- 
que path in T ,  from uio to uit, of length t, for i = 1,2,. . . , p ,  and T is the 
unique order-preserving map from { 1,2, . . . , p )  to {ul, ,  , uza, . . . , uprp) 

where ulo < u 2 ~  < . . . < up0. 
By using the definition of the sign of a generalized matching, we 

have the generalized Matrix Tree Theorem: 

THEOREM 3 Let G be a mixed graph, and let V 1 ,  V 2 C  V(G) with 
IVII = (V21. Then 

where the sum is taken over generalized matchings R between V 1  and 

v2. 

Proof This follows immediately from the discussion before the 
theorem. 

COROLLARY 3 Let G be a quasi-bipartite graph, and let V 1 ,  V2 C 
V ( G )  with IVII = 1V21. Then 

where the sum is taken over generalized matchings between V I  and V2. 
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COROLLARY 4 Let G be a mixed graph, and let V I ,  V2 C V(G) with 
IV,) = IVZI and V l n  V2 = 0. Then 

where the sum is taken over matchings R between V I  and V2. 

Proof This follows immediately by the characterization of the non- 
singular substructures in Theorem 2, as the disjointness of V1 and V2 
force each component of a nonsingular substructure R to be a tree 
with exactly one edge connecting a vertex of V1\V2 with a vertex of 
V2\ V, ,  i.e., a matching between V I  and V2. 

5. STRUCTURE OF QUASI-BIPARTITE GRAPHS 

In this section we take a closer look at the structure of quasi-bipartite 
graphs. The next result provides alternative definitions of such graphs. 
A signature matrix is a diagonal matrix with f 1 along the diagonal. 

THEOREM 4 Let G be a mixed graph with incidence mafri-x M.  Then 
the following conditions are equivalent: 

(i) G is quasi-bipartite. 
(ii) There exists a sigm!ure m ~ t r i x  D such that the column sums oj'DM 

are all 0, where M is the incidence matrix o f  G. 
(iii) There exists a signature matrix D such that DLD' has all ofll 

diagonal entries 0 or - 1, where L is the Laplacian matrix o f  G. 
(i\l) There euis?s r! parfit;{)n V ( G )  = V! u V2 such that every edze 

between V ,  and V2 is unoriented and every edge within V1 or V2 is 
oriented. 

Proof We assume that G is connected, since the genera1 result can be 
obtained by treating the connected components separately. 

(i)*(ii). We will work with GF(3), the finite field consisting of 
{-1,0,1), where the operations are addition and multiplication 
modulo 3. If G is quasi-bipartite, then M has row-rank (over GF(3)) 
less than v, the number of vertices in G. Thus there exists a vector 
x = (x, .  ~ 2 , .  . . , x,)' over GF(3) such that xrM = 0. It is easy to see 
that since G is connected, x cannot have a 0 component. Now let D 
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be the signature matrix with x,, x2, . . . , x, as its diagonal entries. It 
follows that DM has column sums 0. 
(ii)+(iii). Let D be a signature matrix such that the column sums of 
DM are all 0. Then each column of DM must contain a 1 and a - 1, 
the remaining entries being 0. Thus DMM'D'  is the Laplacian mat- 
rix of a directed graph and therefore it has off-diagonal entries 0 or 
- 1. 
(iii)+(iv). Let D be a signature matrix such that DMM'D'  has off- 
diagonal entries 0 or- 1. Let V ,  (respectively, V2) be the set of those 
vertices which correspond to a 1 (respectively, - 1) on the diagonal 
of D. Then it can be seen that any edge connecting a vertex in V, 
and a vertex in V2 must be unoriented, whereas the remaining edges 
must all be oriented. 
jiv)+jij. This assertion is easily proved since any cycle in G must 
coriiiiiri ail even number (possibly zero) of cdgcs that connect a 
vertex in I.', and a vertex in V2, and by (iv), all such edges are 
unonented. Therefore, any cycle in G is singular, and C is quasi- 
bipartite. 

THEOREM 5 Let G be a mixed quasi-bipartire graph. T h m  (he ubsol- 
ute values of all the cojactors of the Laplaciun matrix L (G) are equal, 
and their common absolute value is the number of spanning trees of G. 

Prouf The resuit follows from the equivalzricc ilif (i) and Gii) ir, Thee- 
rem 4 and the generalized Matrix Tree Theorem. 
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